At the moment, organic peroxides play an important role in solving many theoretical and applied problems of chemistry, biology and medicine. These compounds are widely used as oxidants and radical initiators of free radical reactions, which are widely used in the manufacture of polymers from unsaturated monomers, both in industry and in the laboratory. Peroxides are also used as oxidants, disinfectants, bleachers, etc., and also are intermediates in the production of various classes of functional organic compounds.
Heterocyclic compounds and their derivatives have sufficient reactivity for the production of functional compounds, including peroxide-containing.
It is relevant to obtain peroxide monomers by the interaction of peroxides that contain a reactive hydroxyl group or a halogen atom with traditional monomers (α-methylstyrene, acrylic and methacrylic acids and their chloranhydrides, maleic anhydride) in the molecule. To produce peroxides with a hydroxyl group, oxygen-containing heterocycles can also be used.
The aim of the work was to obtain products of the dissociation reactions of three-, four-, and five-membered oxygen-containing disubstituted heterocycles with tert-butylhydroperoxide.
During the reaction of 2,2-dimethyloxirane with tert-butylhydroperoxide, it was found that in the presence of acid catalysts (sulfate, perchlorate, trifluoroacetic) there are three main reactions: rearrangement of oxiran to aldehyde, polymerization of oxirane and the addition of hydroperoxide. Moreover, the proportion of the first reaction is predominant.
When the 3-bromomethyl-3-hydroxymethyloxetane was opened by tert-butylhydroperoxide, it was found that the reaction takes place both on the halogen atom and on the oxetane cycle. As a result, a mixture of peroxides is formed that contains hydroxyperoxide, which is a product of substitution of halogen on TBGP, bromo-containing dihydroxyperoxide is the product of dissociation of the t-butylhydroperoxide of the oxetanic cycle and the product of the reaction in two reaction centers. As a catalyst, an alkaline aluminum oxide is used.
In the reaction of 2,2-dimethyl-1,3-dioxolane with t-butylhydroperoxide, a mixture of two peroxides, the products of the dissociation of the disubstituted dioxolane cycle, was obtained. The reaction proceeded from the use of sulfate acid as a catalyst.
Also, the effect of temperature on the time and output of the products of the reaction products of the decomposition of disubstituted three-, four-, and five-membered oxygen-containing heterocyclic compounds was investigated.
1. The Chemistry of Peroxides, V.2, Parts 1 Edit/ Z.Rappoport. Willey&Sons Ltd. – 2006. – P. 912,
1279. 2. M. Borzenkov, O. Hevus. Surface Active Monomers. Synthesis, properties and application
Springer. – 2014. – 67 p. 3. S. Voronov, V. Tokarev, G. Petrovska. Heterofunctional Polyperoxides.
Theoretical Basis of Their Synthesis and Application in Compound. State University Lviv Polytechnica. –
Lviv, 1994. – 85. – Р. 4. 4. Theresa M. Allen, et al Drug Delivery Systems: Entering the Mainstream.
Science, 2004. – Vol. 303. – P. 1818. 5. Apurva Srivastava, Tejaswita Yadav, Soumya Sharma, Anjali
Nayak, Akanksha Kumari, Nidhi Mishra. Polymers in Drug Delivery // Journal of Biosciences and
Medicines. – 2016. – Vol. 4. – P. 69–84. 6. Martin Hrubý Sergey K.Filippov Petr Štěpánek Smart polymers
in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal. – Vol.
65, April 2015. – P. 82–97. 7. Нуртдинов С. Х., Николаев В. Ф., Султанова Р. Б., Фахрутдинова Р. А.
Оксид этилена и его производные. – Калининград : КГТУ, 2007. — 90 с. 8. Гевусь О. І.
Функціональні поверхнево-активні пероксиди і мономери як реагенти для одержання
реакційноздатних модифікаторів поверхні: дис. … д-р хім. наук: 02.00.03. / Гевусь Орест Іванович. –
Львів, 2010. – 250 с. 9. Ластухін Ю. О., Воронов С. А. Органічна хімія. – 3-тє вид. — Львів : Центр
Європи, 2006.— С. 348–356. 10. Костиков Р. Р. Малые циклы / Соросовский образовательный
журнал. – 1997. – № 8. – С. 52–59. 11. Kropf H., Tokler A. Oxirane and oxetane scission with alkyl
hydroperoxides on alumina // J. Chem. Res. Microfiche. – 1985. – No. 27–32. – P. 2948–2962.
12. H. Kropf u. A. Torkler, Zur Oxiran- und Oxetanspaltung mit Alkylhydroperoxiden an Aluminiumoxid.
J. Chem. Res. (M). – 1985. – P. 2948–2962. 13. Боброва К. І., Флейчук Р. І., Гевусь О. І. Синтез нових
нейоногенних пармерів на основі b-гідроксилвмісних пероксидів // Вісник НУ ЛП. – 2016. – № 841. –
C. 3–8. 14. Боброва К. І., Флейчук Р. І., Гевусь О. І. Синтез нейоногенних ПАР на основі дизаміщених
оксетанів // Вісник НУ ЛП. – 2017. – № 868. – C. 3–8. 15. Houben-Weyl. Methoden der organische
Chemie. – Vol. E 13, Organische Peroxo-Verbindungen. Stuttgart-new York Tieme. – 1988. – 1490 p.
16. Belcher R. Submicro Methods of Organic Analysis. – Elsevier. – Amsterdam. – 1966. – 346 p.
10. Isaacs N. S. Experiments in Physical Organic Chemistry. – Macmillan. – London. – 1969. – 452 p.
17. Антоновский В. Л., Бузланова М. М. Аналитическая химия органических пероксидных
соединений. – М.: Химия, 1978. – 308 с. 18. Черонис Н. Д., Ма Т. С. Микро- и полумикрометоды
органического функционального анализа. – М.: Химия, 1973. – 576 с. 19. Бюлер К., Пирсон Д.
Органические синтезы. I часть; пер. с англ. – М.: Мир, 1973. – 620 с.