STRENGTHENING OF SUBJECTED TO FIRE MASONRY STRUCTURES WITH GFRP MASHES (TM “MAPEI”)

2018;
: 18-28
1
Lviv Polytechnic National University, Department of building construction and bridges
2
Lviv Polytechnic National University, Department of building construction and bridges
3
MAPEI-Ukraine
4
Lviv Polytechnic National University

About eighty thousand fires occurred in Ukraine in 2017. Therefore, a strengthening of building structures which were subjected to the fire is an important issue. The modern retrofitting method based on Glass Fiber Reinforced Polymer (GFRP) materials is widely spread over the world. Taking into consideration the speed and simplicity of installing, which lead to price decreasing, this long-term direction needs a significant amount of research for improving standards. This paper is dedicated to research connected to compressed masonry structures strengthened with GFRP mashes (ТМ “MAPEI”) after the fire influence. The aim of the investigation was to verify the common calculation method suggested by guidance on experimental samples after heating. The experimental studies were conducted on clay masonry brick columns that were supposed to 60 min. fire action and strengthened. The special furnace was used for samples heating and heat transfer was analyzed as well. After that axial compressive tests were performed. As the result, new information about deformations diagrams, failure models and strengthening effect was obtained. Presented results are discussed in terms of ultimate strength of masonry samples before and after strengthening. The analysis shows the adequacy of calculation method respectively to fire damaged masonry structures. But some aspects of this design technique are still open. Obviously, additional attention should be paid to deformation of such kind masonry structures as far the modulus of elasticity changes rapidly after the fire. The stress-strain curves and crack patterns were obtained and will be discussed in future articles.

1. The Ukrainian Civil Protection Research Institute (UkrCPRI), 2018. Analiz masyvu kartok obliku pozhezh.[online] Available at: <http://undicz. dsns. gov. ua/ua/Analiz-masivu-kartok-obliku-pozhezh.html> [accessed 05.05.2018].

2. Japan Society of Civil Engineers, 1997. JSCE Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Research Committee on Fiber Reinforcing Materials, Tokyo: JSCE.

3. Canadian Standards Association, 2002. CAN/CSA-S806-02 – Design and Construction of Building Components with Fibre Reinforced Polymers, Toronto, Ontario: CSA

4. National Research Council, 2006. CNR-DT 206/2006 Istruzioni per la Progettazione, l`Esecuzione ed il Controllo di Strutture di Calcestruzzo Armato con Barre di Materiale Composito Fibrorinforzato, Rome: CNR.

5. American Concrete Institute, 2006. ACI 440.1R-06 Guide for the design and construction of concrete reinforced with FRP bars. Michigan: ACI.

6. MSGKRF, 2015. SP 164.1325800. Usileniye zhelezobetonnykh konstruktsiy kompozitnymi materialami. Pravila proyektirovaniya. Moscow: SP.

7. DP “NDIBK”. 2011. No. 1732. Zvit pro naukovo-tekhnichnu robotu “Rozrobka rekomendatsii z posylennia zbirnykh zalizobetonnykh konstruktsii zovnishnim armuvanniam systemoiu kompozytnykh materialiv Ruredil X Mesh Gold. viewed 01.06.2018.

8. DP “NDIBK”. 2013. No. 2167. Zvit pro naukovo-tekhnichnu robotu “Rekomendatsii shchodo zastosuvannia kompozytnykh materialiv firmy SIKA dlia pidsylennia zalizobetonnykh konstruktsii. viewed 01.06.2018.

9. Assemblea Generale Consiglio Superiore LL. PP, 2009. Linee Guida per la progettazione, l`esecuzione ed il collaudodi interventi di rinforzo di strutture di C. A., e C. A. P. e murarie mediante FRP. Rome: LG.

10. Borri, A., Castori, G., Corradi, M., Giannantoni, A., 2010. Seismic Upgrading Works carried out with Composite Materials on Historic Constructions. In: B. H. V. topping, J. M. Adam, F. J. Pallarés, R. Bru, M. L. Romero, Proceedings of the Tenth International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, paper 234.

11. Tumialan, J., Micelli, F., Nanni A., 2001. Strengthening of masonry structures with FRP composites. In: Structures Congress. 21–23 May, 2001. Washington, D. C., United States, pp. 1-18.

12. Kopeika A., Bondarenko Yu., Sushko E., 2003. Dosvid vykorystannia skloplastykiv dlia vidnovlennia kamianykh konstruktsii. Naukovyi visnyk budivnytstva, #23. p. 161–165.

13. Startsev A., Sundukova A., 2014. Usileniye kirpichnoy kladki kompozitnymi materialami i vintovymi sterzhnyami Stroitelstvo unikalnykh zdaniy i sooruzheniy, 6(21), p. 17-31.

14. Malhotra, H. L., 1982. Properties of materials at high temperatures. Report on the work of technical committee 44PHT, Matériaux et Constructions, pp. 161-170.

15. Gnanakrishnan, N., Lawther R., 1990. Perfomance of masonry walls exposed to fire. In: Proceedings, Fifth North American Masonry Conference. Vol. III. University of Illinois at Champaign/Urbana, June 3-6, 1990, p.901-914.

16. Meyer, U., 2006. Extended application rules for the fire performance of masonry walls, British Masonry Society, #10.

17. Nahhas, F., Ami Saada, R., Bonnet, G., Delmotte, P., 2007. Resistance to fire of walls constituted by hollow blocks: Experiments and thermal modelling, Applied Thermal Engineering, Vol. 27, pp. 258–267.

18. Russo, S., Boscato, G., Sciarretta, F., 2008. Behavior of a historical masonry structure subjected to fire. Journal of the British Masonry Society International. Vol. 21, No. 1.

19. Nguyen, Th. D., Fekri, M., Chammas, R., Me´barki, A., 2009. The behaviour of masonry walls subjected to fire: modelling and parametrical studies in the case of hollow burnt-clay bricks, Fire Safety J. 44 (2009) pp. 629–641.

20. Nadjai, A., Laverty, D., O’Garra, M., 2001. Behaviour of compartment masonry walls in fire situation. In: B. H. V. topping (Ed.), Civil and Structural Engineering Computing.

21. Yaqub, M., Bailey, C, Nedwell, P., 2011. Axial capacity of post-heated square columns wrapped with FRP composites. Cem. Concr. Compos., 33, pp. 694–701.

22. Brancaccio, A., Serafini, R., Casadei, R. 2012. In-site structural assessment and FRP strengthening of a fire damaged RC structure: A case study. In: Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, 13–15 June 2012. Rome, Italy.

23. Liu, M.; Fan, X.-H.; Zuo, Y.-Z.; Song, G.-F. 2013. Strengthening and retrofitting of the industries building after fires. Adv. Mater. Res., pp. 671–674, pp.778–781.

24. Thi, C. N., Pansuk, W., Torres, L. 2015. Flexural behavior of fire-damaged reinforced concrete slabs repaired with near-surface mounted CFRP rods. J. Adv. Concr. Technol, 13, pp.15–29.

25. MAPEI, 2018. Technical documentation. [online] Available at: <http://www. mapei. com/GB-EN/technical-documentation. asp> [accessed: 05.05.2018].

26. Minrehionbud Ukrainy, 2010. DSTU B V.2.7-239-2010. Rozchyny budivelni. Metody vyprobuvan. Kyiv: Minrehionbud Ukrainy.

27. Minrehionbud Ukrainy, 2011 DSTU B V.2.7-248-2011. Materialy stinovi. Metody vyznachennia hranyts mitsnosti pry stysku i zghyni. Kyiv: Minrehion Ukrainy.

28. Bula, S., Boiko, R., LPNU. 2014. Pich dlia vohnevykh vyprobuvan budivelnykh konstruktsii ta teplofizychnykh vyprobuvan materialiv. Ukraine. Patent 93911.

29. Minrehionbud Ukrainy, 2011. DBN V.2.6-162:2010. Konstruktsii budynkiv i sporud. Kamiani ta armokamiani konstruktsii. Osnovni polozhennia. Kyiv: Minrehionbud Ukrainy.

30. Zenkov, N., 1974. Stroytelnie materily i povedenie ih v uslovyiakh pozhara. Moscow: VYPTSH MVD USSR.

31. Aydin, S., Yazici, H., Baradan, B., 2008. High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers, Construction and Building Materials. No. 22.