: 68-74
Lviv Polytechnic National University, Department of Hydraulic and Sanitary Engineering
Lviv Polytechnic National University

In conditions of intensive increasing of urbanized impervious areas, stormwater management became especially relevant. To solve this problem, a number of methods have been developed and investigated, which are based on the retention, detention or filtration of stormwater runoff. Stormwater management by the pervious pavements is an effective method to control surface runoff; it is widely used in foreign practice, allowing to reduce the runoff volume, provides its preliminary treatment, improves the safety on the roads. Efficiency of stormwater management using the permeable pavement systems is discussed in the paper. The review identified four typical pervious paving surfaces: porous concrete, porous asphalt, permeable interlocking concrete pavers, concrete and plastic grid pavers. The main characteristics of these types of pervious pavement are discussed in this paper. Besides the structural features of the previous pavement systems for soils of different permeability are analyzed. The typical composition of porous concrete and its basic physical-mechanical and hydraulic parameters are considered. The optimal ranges of compressive strength of porous concrete (5–30 MPa), volume porosity (15–25 %), and filtration coefficient (2–5.4 mm/s) are determined, which are in good accordance with author’s experimental results (permeability coefficient 7.4–23.0 mm/s, volume porosity 0.189–0.349 and the compressive strength 4.04–13.85 MPa). The possible influences of cold climatic conditions and the clogging process onto the permeable pavements maintenance are discussed. Different methods of maintenance, including vacuum sweeping and high pressure washing are considered.

1. Arhin S. A. and Madhi R. (2014), “Optimal mix designs for pervious concrete for an urban area”, International Journal of Engineering Research & Technology, Vol. 3, No 12, pp. 42–50.

2. Bassuoni M. T. and Sonebi M. (2010), “Pervious concrete: A sustainable drainage solution”, Concr., The Concr. Soc., No 44, pp. 14–16.

3. Chandrappa A. K. and Biligori K. P. (2016), “Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach”, Constr. Build Mater., No 123, pp. 627–637.

4. Crouch L. K., Pitt J. and Hewitt R. (2007), “Aggregate effects on pervious portland cement concrete static modulus of elasticity”, J. Mater. Civ. Eng., No 19., pp. 561–568.

5. Cui X., Zhang J., Huang D. and Gon X., (2016), “Measurement of permeability and the correlation between permeability and strength of pervious concrete”, 1st International Conference on Transportation Infrastructure and Materials, pp. 885 – 892.

6. Debo T. N. and Resse A. J., (1995), Municipal stormwater management, Lewis Publisher, 1154 p.

7. Ferguson B. K. (2005), Porous pavements, CRC Press, Boca Raton, 577 p.

8. García L. Á., Schlangen E. and Van de Ven M., (2011), “Induction healing of asphalt mastic and porous asphalt concrete”, Contents lists available at ScienceDirect “Construction and Building Materials”, pр. 3746-3752.

9. Georgia stormwater management manual: Technical Handbook (2001): AMEC Earth and Environmental Center for Watershed Protection, Vol. 2, 844 р.

10. Houle K. M., Roseen R. M., Ballestero T. P., Briggs J. F. and Houle J. J. (2009), “Examinations of pervious concrete and porous asphalt pavements performance for stormwater management in Northern climates”, Proc., World Environmental and Water Resources Congress, Great Rivers, pр. 1105–1122.

11. Patil V. R., Gupta A. K. and Desai D. B (2009), “Use of pervious concrete in construction of pavement improving their performance”, IOSR Journal of Mechanical and Civil Engineering, No 2, pp. 54-56.

12. Pindado M. A., Aguado A. and Josa A. (1999), “Fatigue behavior of polymer modified porous concretes”, Cem. Concr. Res., No 29, pp. 1077–1083.

13. Poulikakos L. D. et al. (2006), “Mechanical properties of porous asphalt. Recommendations for standardization”, Swiss Federal Laboratory for Materials Testing and Resarch, Switzerland, 110 p.

14. Schaefer V., Wang K., Suleiman M. and Kevern J.( 2006), “Mix design development for pervious concrete in cold weather climates”, National Concrete Pavement Technology: Final Report, 85 p.

15. Sonebia M., Bassuonib M. and Yahiac A. (2016), “Pervious concrete: Mix design, properties and applications”, RILEM Technical Letters, No1, pр. 109–115.

16. Tennis P. D., Leming M. L. and Akers D. J. (2004), Pervious concrete pavement: Portland Cement Association and National Ready Mixed Concrete Association, Skokie, Illinois, USA, 36 p.

17. Wanielista M., Chopra M., Spence J. and Ballock C. (2007), Construction and maintenance assessment of pervious concrete pavements: Stormwater Management Academy University of Central Florida, Orlando, 182 p.

18. Weiss P. T., Kayhanian M., Khazanovich L. and Gulliver J. S. (2015), Permeable pavements in cold climates: State of the art and cold climate case studies, Report. Minnesota, USA, 375 p.

19. Zhuk V. M. and Boshota V. V. (2012), “Teoretychne doslidzhennja zalezhnosti vysoty napovnennja eksfiljtracijnoji transheji vid rozrakhunkovoji tryvalosti doshсu”. [Theoretical study of the dependence of the height of filling of the exfiltration trench from the estimated rain duration], Visn. Nac. un-tu “Lviv. politekhnika” “Teorija i praktyka budivnyctva”, Lviv: NU “Lvivs’ka politekhnika”, No 742, pp. 249–256 [in Ukrainian].

20. Zhuk V. M. and Kachmar I. Z. (2015), “Teoretychnyj rozrakhunok nakopychennja poverkhnevogho stoku na poverkhni vodopronyknykh udoskonalenykh pokryttiv”. [Theoretical calculation of the accumulation of surface runoff on the surface of permeable pavement], Visn. Nac. un-tu “Lviv. politekhnika” “Teorija i praktyka budivnyctva”, Lviv: NU “Lvivs’ka politekhnika”, No 23, pp. 122–128 [in Ukrainian].

21. Kachmar I. Z., Zhuk V. M. and Vovk L. I. (2016), “Eksperymentaljni doslidzhennja ghidravlichnykh ta fizyko-mekhanichnykh kharakterystyk zrazkiv z porystogho vodopronyknogho betonu”. [Experimental studies of hydraulic and physical-mechanical characteristics of samples from porous concrete], Resursy pryrodnykh vod Karpatsjkogho reghionu, Problema okhorony ta racionaljnogho vykorystannja. Materialy P'jatnadcjatoji mizhnarodnoji naukovo-praktychnoji konferenciji: Zbirnyk naukovykh statej, Lviv: NU “Lvivska politekhnika”, No 15, pp. 171–174 [in Ukrainian].

22. Tkachuk O. A. and Shevchuk O. V. (2016),
“Konstruktyvni osoblyvosti infiljtracijnykh majdanchykiv z vodopronyknymy pokryttjamy”. [Constructive features of infiltration areas with water-permeable pavement], Naukovo-tekhnichnyj, vyrobnychyj ta
informacijno-analitychnyj zhurnal “Nauka ta budivnyctvo”, Kyjiv, No 1(7), pp. 38–41 [in Ukrainian].

23. Tkachuk S. G., Zhuk V. M. (2012), Reghuljuvannja doshhovogho stoku v systemakh vodovidvedennja:
monoghrafija. [Regulation of rain drainage in sewage systems: monograph], Lviv: Vydavnyctvo Lvivskoji
politekhniky, 216 p. [in Ukrainian].