: 162-168
Lviv Polytechnic National University, Department of construction production

Concrete is the most widely used building material due to its versatility, durability and availability of raw materials. With the development of the construction industry requirements to concrete, in particular their strength, are increased. Increasing of the physical and mechanical properties and crack resistance of cementitious composites during the operation of buildings and structures is an actual problem in engineering practice. A special class of fiber reinforced materials – engineered cementitious composites (ECC) has been developed for this purpose. The article shows that the use of polypropylene fibers can increase the flexural strength of the ECC by 40 %. Additional replacement of the fly ash on metakaolin and use of fibers is caused increase of the flexural strength of the ECC by 23 % compared to ECC without metakaolin. The standard compressive strength of modified cementitious composites is 86.7 MPa. After firsts cracking, tensile load-carrying capacity continues to increase, resulting in strain-hardening accompanied by multiple cracking. In order to obtain such behavior ECC is designed in accordance with the micromechanics theory which based on the optimization of component composition and microstructure of the material, taking into account the interaction between the fiber, the cement matrix and the transmission zone of the fiber-matrix material. It is proved that fiber reinforcement with polypropylene fiber and partial replacement of fly ash
with metakaolin can increase the crack resistance of composites, estimated at critical intensity of stresses, after 7 and 28 days in 1,2 times compared to the composition without metakaolin. Indicators of strength of building composites are directly related to their structure, which is determined by of porosity. The developed engineered cementitious composites with metakaolin are characterized by a decrease of the open porosity by 35 %, a pore size ratio of 3.4 times compared to the base composites.

1. Dvorkin L. Y., Babych Y. M., Zhytkovsky V. V., Bordyuzhenko O. M., Filipchuk S. V., Kochkarov D. V., Kovalyk I. V., Kovalchuk T. V., Skrypnyk M. M. (2017) Vysokomitsni shvydkotverdnuchi betony ta fibrobetony. [High-strength rapid hardening concretes and fiber reinforced concretes]. Rivne, NUVGP, 331 p. [in Ukrainian].

2. Suhanov V. G., Vyrovoy V. N., Korobko O. A. (2016) Struktura materiala v structure konstruktsui. [Structure of material in construction structure]. Odessa, Poligraf, 244 p. [in Russian].

3. Yu К., Jiangtao Y., Dai J.-G., Lu Z.-D., Shah S. P. (2018) Development of ultrahigh performance engineered cementitious composites using polyethylene (PE) fibers. Construction and Building Materials. no 158, pp. 217–227.

4. Zhang J., Gong C., Guo Z., Zhang М. (2009) Engineered cementitious composite with characteristic of low drying shrinkage. Cement and Concrete Research. no 39, pp. 303–312.

5. Li V. C. On Engineered Cementitious Composites (ECC). A review of the material and its applications. Journal of Advanced Concrete Technology. 2003, Vol. 1, No. 3, pp. 215–230.

6. Marushchak U., Sanytsky M., Sydor N. (2017) Design of rapid hardening engineered cementitious composites for sustainable construction. SSP – Journal of Civil Engineering. Vol. 12, Issue 2, pp. 107–112.

7. Marushchak U., Sanytsky M., Sydor N., Braichenko S. (2018) Research of nanomodified engineered cementitious composites. IEEE 8th International Conference on Nanomaterials: Applications & Properties. Part 2, 02CBM16.

8. Sakulich A. R., Li V. C. (2011) Nanoscale characterization of engineered cementitious composites (ECC). Cement and Concrete Research. no 41, pp. 169–175.

9. Solodkyy S. Y., Kahanov V. O., Hornikovska I. B., Turba Yu. V. (2015) Doslidzhennia trishchynostiykosti vazhkyh betoniv ta pinobetoniv, armovanyh polipropilenovoyu fibroyu dlia dorozhnioho budivnytstva. [A study of the cracking properties of normal weight concrete and foam concrete reinforced with polypropylene fiber for road construction.]. Vostochno-Yevropeyskiy zhurnal peredovyh tehnologiy – Eastern-European Journal of Enterprise Technologies. no 4/5 (76), pp. 40–46. [in Ukrainian].

10. Marushchak U., Sanytsky M., Mazurak T., Olevych Yu. (2016) Research of nanomodified Portland cement compositions with high early age strength. Eastern-European Journal of Enterprise Technologies. no 6/6 (84), pp. 50–57.

11. Sanytsky M., Marushchak U., Kirakevych I., Stechyshyn M.. (2015) Vysokomitsni samoushchilniuvalni betony na osnovi dyspersno-armovanykh cementuuchyh system. [High-strength self-compacting concrete based on dispersion-reinforced cementing systems]. Budivelni materialy ta vyroby. No. 1. pp. 10–14. [in Ukrainian].

12. Solodkyy S. Y., Turba Yu. V. (2017) Pidvyshchennya trishchynostiykosti dyspersno armovanyh polipropilenovoyu fibroyu betoniv tehnologichnymy chynnykamy. [The improvement of crack resistance of concrete dispersive reinforced with polypropylene fiber by technological factors]. Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arhitektury. No. 66. pp. 99–105. [in Ukrainian].

13. Sydor N., Marushchak U., Margal I. (2018) Vplyv komponentnogo skladu na vlastyvosti inzhenernyh cementuyuchyh kompozytiv. [Effect of component composition on properties of engineered cementitious
composites]. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”. Seriia: teoriia i praktyka budivnytstva. №888. pp. 127–132. [in Ukrainian].