Model Development and Structural-Parametric Synthesis of a Fractional- Order Speed Controller of theFC-AM System

2025;
: pp. 28 - 38
1
Lviv Polytechnic National University Department of Electric Mechatronics and Computerized Electromechanical Systems
2
Lviv Polytechnic National University Department of Electric Mechatronics and Computerized Electromechanical Systems
3
Lviv State University of Life Safety Department of Supervision-Preventive Activity and Fire Automatics
4
Lviv Polytechnic National University Department of Computer-Aided Design
5
Lviv Polytechnic National University Department of Electric Mechatronics and Computerized Electromechanical Systems
6
Lviv Polytechnic National University Department of Electric Mechatronics and Computerized Electromechanical Systems

In modern industry, the most widely used are adjustable electric drives of the ‘Frequency converter - induction motor’ (FC-AM) system, in which integer-order controllers are mainly implemented and used. The use of fractional-order controllers in electromechanical FC-AM systems allows to ensure: higher quality of transition processes, increase the stability margin and reliability of the system, higher robustness to changes in motor parameters and, as a result, guarantees higher performance compared to classical integer controllers.
In the work, a linearized model of the FC-AM electric drive with scalar control and negative feedback on speed is developed, its parameters are calculated for a specific electric drive and its accuracy is confirmed by modeling.
The article develops a new approach to determine the structure and parameters of the speed controller of the FC-AM electric drive based on the application of the corresponding fractional order desired form. The calculation of fractional and integer speed controllers is carried out in accordance with the specified parameters of the rise time and overshoot of the motor speed.
The developed method of structural-parametric synthesis of fractional order controllers makes it possible to create new and upgrade existing industrial FC-AM electric drives based on fractional order controllers and use it in engineering calculations.

  1. El-Shahat A. Induction Motors – Recent Advances New Perspectives and Applications. – IntechOpen, 2023.
  2. Bahrami-Fard M., Chen T., Winchell E. A., Fahimi B. Integrated induction motor drive for variable speed industrial applications // IEEE Transactions on Power Electronics. – 2025. – DOI: 10.1109/TPEL.2025.3532880.
  3. Graciola C. L., Goedtel A., Angelico B. A. Energy efficiency optimization strategy for scalar control of three- phase induction motors // Journal of Control Automation and Electrical Systems. – 2022. – Vol. 33. – P. 1032– 1043.
  4. Kopchak B. Development of fractional order differential-integral controller by using Oustaloup transformation // Proc. XII Int. Conf. Perspective Technologies and Methods in MEMS Design (MEMSTECH). – Lviv, Ukraine, 2016. – P. 62–65. – DOI: 10.1109/MEMSTECH.2016.7507521.
  5. Marushchak Y., Mazur D., Kwiatkowski B., Kopchak B., Kwater T., Koryl M. Approximation of fractional order PIλDμ-controller transfer function using chain fractions // Energies. – 2022. – Vol. 15, Iss. 13. – P. 1–12. – DOI: https://doi.org/10.3390/en15134902
  6. Adigintla S., Aware M. V. Design and analysis of a speed controller for fractional-order-modeled voltage-source- inverter-fed induction motor drive // International Journal of Circuit Theory and Applications. – 2022. – Vol. 50, No. 7. – P. 2378–2397.
  7. Trivedi R., Padhy P. K. Design of indirect fractional order IMC controller for fractional order processes // IEEE Transactions on Circuits and Systems II: Express Briefs. – 2021. – Vol. 68, No. 3. – P. 968–972.
  8. Khurram A., Rehman H., Mukhopadhyay S., Ali D. Comparative analysis of integer order and fractional order proportional integral speed controllers for induction motor drive systems // Journal of Power Electronics. – 2018.– Vol. 18, No. 3. – P. 723–735.
  9. Adigintla S., Aware M. V. Robust fractional order speed controllers for induction motor under parameter variations and low speed operating regions // IEEE Transactions on Circuits and Systems II: Express Briefs. – 2023. – Vol. 70, No. 3. – P. 1119–1123.
  10. Bingi K., Kulkarni R. R., Mantri R. Design and analysis of complex fractional-order PID controllers // Proc. IEEE Madras Sect. Conf. – 2021. – P. 1–6.
  11. Sathishkumar P., Selvaganesan N. Fractional controller tuning expressions for a universal plant structure // IEEE Control Systems Letters. – 2018. – Vol. 2, No. 3. – P. 345–350.
  12. Nemouchi B., Rezgui S. E., Benalla H., Nebti K. Adaptive fractional PI controller for speed  control of asynchronous motor // Proc. Int. Conf. Advances in Electronics, Control and Communication Systems (ICAECCS). – Blida, Algeria, 2023. – P. 1–5. – DOI: 10.1109/ICAECCS56710.2023.10104802.
  13. Malhotra R., Singh N., Singh Y. Genetic algorithms: concepts, design for optimization of process controllers // Computer and Information Science. – 2011. – Vol. 4, No. 2. – P. 39–54.
  14. Kulikov A., Kaverin V., Ardabili S., Mosavi A., Nabipour N., Kalinin A. Machine learning modeling and simulation of asynchronous electric drive // Proc. IEEE 6th Int. Symp. on Logistics and Industrial Informatics (LINDI). – 2024. – P. 95–102. – DOI: 10.1109/LINDI63813.2024.10820415.
  15. Leuzzi R., Lino P., Maione G., Stasi S., Padula F., Visioli A. Combined fractional feedback-feedforward controller design for electrical drives // Proc. Int. Conf. on Fractional Differentiation and Its Applications (ICFDA). – Catania, Italy, 2014.
  16. Ahuja A., Tandon B. Design of fractional order PID controller for DC motor using genetic algorithm // TELKOMNIKA Indonesian Journal of Electrical Engineering. – 2014. – Vol. 12, No. 12. – P. 8140–8151.
  17. Bendjedia M., Tehrani K., Azzouz Y. Design of RST and fractional order PID controllers for an induction motor drive for electric vehicle application // Proc. 7th IET Int. Conf. Power Electronics, Machines and Drives (PEMD).– Manchester, UK, 2014.
  18. Saleem A., Soliman H., Al-Ratrout S., Mesbah M. Design of a fractional order PID controller with application to an induction motor drive // Turkish Journal of Electrical Engineering and Computer Sciences. – 2018. – Vol. 26.– P. 2768–2778.
  19. Zhao H., Deng W., Yang X., Li X., Dong C. An optimized fractional order PID controller for suppressing vibration of AC motor // Journal of Vibroengineering. – 2016. – Vol. 18, No. 4. – P. 2205–2220.
  20. Thammarat C., Puangdownreong D. Design of fractional order PID controller for induction motor speed control system by cuckoo search // International Journal of Circuits, Systems and Signal Processing. – 2019. – Vol. 13. – P. 92–96.
  21. Kopchak B., Kopchak M. Application of fractional order transfer function with zero and pole in approximation of electromechanical systems high order objects // Proc. XIV Int. Conf. Perspective Technologies and Methods in MEMS Design (MEMSTECH). – Lviv, Ukraine, 2018. – P. 23–27. – DOI: 10.1109/MEMSTECH.2018.8365694.
  22. Kopchak B. Synthesis of automatic control systems by a particle swarm optimization method using Butterworth fractional standard forms // Proc. 16th Int. Conf. Computational Problems of Electrical Engineering (CPEE). – Lviv, Ukraine, Sept. 2015. – P. 78–80. – DOI: 10.1109/CPEE.2015.7333342.