Information System for Adapting Road Lane Segmentation Methods in Navigation Systems in Order to Increase the Accuracy of Road Signs Detection

2024;
: pp. 58 - 68
Authors:
1
Lviv Polytechnic National University, Ukraine

In today’s world, where the speed of technological change is extremely impressive, the traffic industry is not left behind. The use of lane segmentation on the road is becoming a key element not only for safety, but also for improving navigation and traffic sign detection systems. This approach opens the door to a new level of efficiency and accuracy in traffic management, helping to improve the quality and safety of our movement. Let’s dive into the details of this exciting and promising area of road transport technology development.
Lane segmentation on the road allows you to divide the traffic flow into separate segments, taking into account the traffic and needs of different categories of vehicles. This opens up opportunities for more efficient use of road space, reducing congestion and increasing the overall productivity of road infrastructure.

  1. Hechri, A., & M’tiba, A. (2012). Automatic detection and recognition of road signs for driver assistance system. In 16th IEEE Mediterranean Electrotechnical Conference (pp. 888–891). doi: 10.1109/MELCON.2012. 6196571.
  2. Prisakariu, V. A., Timoft, R., Cimmermann, K., Reid, I., & Gol, L. V. (2010). Integration of object detection with three-dimensional tracking for improved driver assistance system. In 20th International Conference on Pattern Recognition (pp. 3344–3347). doi: 10.1109/ICPR.2010.816.
  3. Yang, L., Kwon, K., Mun, K., Lee, S., & Kwon, S. (2012). Recognition of broken road signs based on local histogram matching. In Conference on Computing, Communication, and Applications (pp. 415–419). doi: 10.1109/ComComAp.2012.6154884.
  4. Lafuente-Arroyo, S., Gil-Jimenez, P., Maldonado-Bascon, R., Lopez-Ferreras, F., & Maldonado-Bascon, S. (2005). Shape classification of road signs assessment I: Support vector machine method based on  distance  to boundary. In Proceedings of the IEEE Symposium on Intelligent Transportation Systems (pp. 557–562). doi: 10.1109/IVS.2005.1505162.
  5. Yuan, S., Liu, L.-F., Li, C.-H., & Ku, Y.-Y. (2009). Fusion of visual saliency with HOG feature learning for road sign detection. In 2009 IEEE Symposium on Intelligent Vehicles (pp. 24–29). doi: 10.1109/IVS.2009.5164247.
  6. Han, J. F., Adhami, R. R., & Bhuiyan, S. M. A. (2009). Image segmentation based road sign detection. In IEEE Southeastcon 2009 (pp. 24–29). doi: 10.1109/SECON.2009.5174040.
  7. Huang, I., Le, I., & Cheng, F. (2012). Speed constrained road sign detection and recognition method. In Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (pp. 371–374). doi: 10.1109/IIH-MSP.2012.96.
  8. Greenhalgh, J., & Mirmehdi, M. (2012). Road sign recognition using MSER and Random Forests. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (pp. 1935–1939).
  9. Nisa, S. K., & Amelia Ritahani Ismail. (2022). Dual U-Net with Resnet Encoder for Medical Image Segmentation. International Journal of Advanced Computer Science and Applications, 13(12). DOI: 10.24507/icicel.16.01.75.
  10. Marchellino, & Chenggoro, T. V., & Pardamean, B. (2022). UNET++ with Pyramid Scales for Crowd Counting. ICIC Express Letters, 16, 75–82. DOI: 10.24507/icicel.16.01.75.
  11. Zou, Z., Hanwen Jiang, Ciu Dai, Yuanhao Yue, Long Chen, & Cyan Wang. (2019). Robust lane detection from extended driving scenes using deep neural networks. IEEE Transactions on Intelligent Transportation Systems, 69(1), 41–54.
  12. Qing, C., Wang, H., & Li, S. (2020). Fast lane detection with structural considerations. In Computational Perspectives – ECCV 2020: 16th European Conference (pp. 276–291). Springer International Publishing.
  13. Yu, S., Lee, H. S., Mioung, H., Yun, S., Park, H., Cho, D., & Kim, D. (2020). End-to-end lane marker detection using line-wise classification. In Proceedings of the IEEE/CVF Conference on Assumptions about Image Highlighting and Modeling (pp. 1006–1007).
  14. Neven, D., De Brabander, B., Georgulis, S., Proesmans, M., & Van Gool, L. (2018). Towards end-to-end lane detection: an instance segmentation approach. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 286– 291). IEEE.
  15. Abualsaud, H., Liu, S., Lu, D. B., Situ, K., Rangesh, A., & Trivedi, M. M. (2021). Laneaf: robust multi- lane detection using affinity regions. IEEE Robotics and Automation Letters, 6(4), 7477–7484.