The paper investigates the problem of predicting changes in user states (including churn) based on session data using deep neural networks. The paper considers the use of long short-term memory models and convolutional neural networks, as well as the use of byte pair coding for data pre-processing. The functionality of the developed information system for forecasting changes in the state of users and interpreting forecasting models, which combines methods of data analysis, building forecasting models and explaining the results, is analysed. Experimental results have shown that byte pair encoding improves the accuracy of predictions, especially in the case of long short-term memory. This article discusses an approach to the development of an information system based on machine learning methods aimed at predicting changes in user states. The main methods and algorithms that can be used to build predictive models are analysed, including logistic regression, naive Bayesian classifier, decision tree, extreme gradient boosting, survival analysis methods and deep learning models. The effectiveness of the proposed approach is also evaluated and possible directions for further research are presented.
- Balakrishnan N., Nair U., Sankaran P. G. Reliability Modelling and Analysis in Discrete Time. Elsevier Science & Technology Books, 2018. 508 p. DOI: http://dx.doi.org/10.1016/B978-0-12-801913-9.00001-4
- Bhattacharjee, S., Thukral, U., & Patil, N. (2023, December). Early Churn Prediction from Large Scale User- Product Interaction Time Series. In 2023 International Conference on Machine Learning and Applications (ICMLA) (pp. 2079-2086). IEEE. . DOI: http:// 10.1109/ICMLA58977.2023.00314
- Clark, T. G., Bradburn, M. J., Love, S. B., & Altman, D. G. (2003). Survival analysis part I: basic concepts and first analyses. British journal of cancer, 89(2), 232–238. DOI: https://doi.org/10.1038/sj.bjc.6601118
- Cox, D. R. (1972). Regression models and life ‐Jotaubrlneas.l of the Royal Statistical Society: Series B(Methodological), 34(2), 187-202.
- Customer Conversion Dataset for stuffmart.com. Kaggle. URL: https://www.kaggle.com/datasets/ muhammadshahidazeem/customer-conversion-dataset-for-stuffmart-com
- Gregory, B. (2018). Predicting customer churn: Extreme gradient boosting with temporal data. arXiv preprint arXiv:1802.03396.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
- Kaplan E. L., Meier P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (282): 457–481. doi:10.2307/2281868
- Khodadadi, A., Hosseini, S. A., Pajouheshgar, E., Mansouri, F., & Rabiee, H. R. (2020). ChOracle: A unified statistical framework for churn prediction. IEEE Transactions on Knowledge and Data Engineering, 34(4), 1656- 1666. DOI: https://doi.org/ 10.1109/TKDE.2020.3000456
- Kim, S., Shin, K. S., & Park, K. (2005). An application of support vector machines for customer churn analysis: Credit card case. Lecture Notes in Computer Science, 3611(PART II), 636-647. https://doi.org/10. 1007/11539117_91
- Liu, X., Xia, G., Zhang, X., Ma, W., & Yu, C. (2024). Customer churn prediction model based on hybrid neural networks. Scientific Reports, 14(1), 30707. DOI: https://doi.org/10.1038/s41598-024-79603-9
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. DOI: https://doi.org/ 10.48550/arXiv.1705.07874
- Maan, J., & Maan, H. (2023). Customer churn prediction model using explainable machine learning. arXiv preprint arXiv:2303.00960. DOI:https://doi.org/10.48550/arXiv.2303.00960
- Mena, C. G., De Caigny, A., Coussement, K., De Bock, K. W., & Lessmann, S. (2019). Churn prediction with sequential data and deep neural networks. a co mparative analysis. arXiv preprint arXiv:1909.11114. https://doi.org/10.48550/arXiv.1909.11114
- Merchie, F., & Ernst, D. (2022). Churn prediction in online gambling. arXiv preprint arXiv:2201.02463. https://doi.org/10.48550/arXiv.2201.02463
- Rudd, D. H., Huo, H., & Xu, G. (2021, December). Causal analysis of customer churn using deep learning. In 2021 International Conference on Digital Society and Intelligent Systems (DSInS) (pp. 319-324). IEEE. DOI:://doi.org/10.1109/DSInS54396.2021.9670561
- Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909.
- Telco Customer and Churn. Kaggle. URL: https://www.kaggle.com/datasets/blastchar/telco-customer-churn
- Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1-9.
- Wang, D. Y. C., Jordanger, L. A., & Lin, J. C. W. (2024). Explainability of highly associated fuzzy churn patterns in binary classification. arXiv preprint arXiv:2410.15827. DOI: //https://doi.org/10.48550/arXiv.2410.15827
- WSDM - KKBox's Churn Prediction Challenge. (2017). Kaggle. URL: https://www.kaggle.com/competitions/kkbox-churn-prediction-challenge.
- Zhovnir Y., Kunanets N., Burov Y., Duda O., Pasichnyk V. (2025) Development of the structure and architecture of situational awareness security information systems for residential complexes Eastern-European Journal of Enterprise Technologies, 1(133), 8-22 DOI: https://doi.org/10.15587/1729-4061.2025.315248