Ranging of emotive words for the use in the methods of tone classification

2017;
: pp. 195 - 203

Shakhovska N. B. Ranging of emotive words for the use in the methods of tone classification / N. B. Shakhovska, Kh. Yu. Hirak // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Informatsiini systemy ta merezhi. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2017. — No 872. — P. 195–203.

Authors: 

Nataliya Shakhovska, Khrystyna Hirak

Information Systems and Networks Department, Lviv Polytechnic National University, 12, S. Bandery Str., Lviv, 79013, Ukraine

This paper is devoted to solve a task of ranging emotive words using methods of tone classification in order to analyze author’s opinion and to effectively perceive useful information from the Internet data. These methods include word-ranging, determination of importance using Fishburne method, pair comparison, hypothesis of Purto and others. They all differ in coefficients, norms, using logarithmic scales though their task is to find out the sequences of words / phrases without deep analysis of their tone, emotional color, and the relationship between them. As a result, platform has been prepared for computing integrated value, which will allow to make opinion mining of user’s profile, author etc.

1. Pang B. Opinion Mining and Sentiment Analysis, B. Pang, L. Lee, Foundations and Trends in Information Retrieval: Vol. 2. No. 1–2, 2008.

2. Danyliuk I. H. Tekhnolohiia avtomatychnoho vyznachennia tematyky tekstu [Text], I. H. Danyliuk, Linhvistychni studii: zb. nauk. pr. Iss. 17, uklad., Anatolii Zahnitko (nauk. red.) and other – Donetsk : DonNU, 2008, P. 290–293.

3. Lytvyn V. V. Metod kvazireferuvannia tekstovykh dokumentiv na osnovi ontolohii predmetnoi oblasti, V. V. Lytvyn, T. I. Cherna, V. M. Kovalevych, Vidbir i obrobka informatsii, Vyp. No 41(117), 2014, P. 100–108.

4. Medykovskyi M. O. Doslidzhennia efektyvnosti vyznachennia vahovykh koefitsiientiv vazhlyvosti, M. O. Medykovskyi, O. B. Shunevych, Visnyk Khmelnytskoho natsionalnoho universytetu, 2011.No 5, P. 176–182.

5. Khomiv B. A. Komparatyvnyi analiz matematychnykh modelei, metodiv ta zasobiv otsiniuvannia opinii v tekstovykh danykh internet-resursiv, B. A. Khomiv, S. A. Lupenko, A. S. Sverstiuk, Visnyk Khmelnytskoho natsionalnoho universytetu, 2011, No 6, P. 7–16.

6. Chalaia L. E. Mery vazhnosty kontseptov v semantycheskoi sety ontolohycheskoi bazy znanyi [Text], L. E. Chalaia, Yu. Yu. Sheviakova, A. Yu. Shafronenko, Materialy druhoi mizhnar. nauk, tekhn. konf. "Suchasni napriamy rozvytku informatsiino-komunikatsiinykh tekhnolohii ta zasobiv upravlinnia", K. : KDAVT, 2011, P. 51.

7. Shakhovska N. B., Noha R. Yu. Analitychnyi ohliad metodiv ta zasobiv opratsiuvannia tekstovoi informatsii, Informatsiini systemy ta merezhi. –No 715, L. : Vyd-vo Lvivskoi. politekhniky, 2011, P. 215–223.

8. Internet-resurs TF-IDF. Access mode: [https://ru.wikipedia.org/wiki/TF-IDF].

9. Internet-resurs Okapi, Access mode: [https://ru. wikipedia.org/ wiki/Okapi_BM25].

10. Internet-resurs, Access mode: [https://habrahabr. ru/post/149605/].

11. Wu H. and Luk R. and Wong K. and Kwok K. Interpreting TF-IDF term weights as making relevance decisions, ACM Transactions on Information Systems, 26 (3). 2008.

12. Katrin ERK. Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass, 2012, 6.10: 635–653.

13. Internet-resurs, Access mode: [http://nlpx.net/archives/179].