Шкалювання емоційно забарвлених слів для використання у методах класифікації тональності

2017;
: cc. 195 - 203
Автори: 
Шаховська Н. Б., Гірак Х. Ю.

Національний університет “Львівська політехніка”, кафедра інформаційних систем та мереж

Запропоновано методи шкалювання емоційно забарвлених слів, що охоплюють ранжування слів, визначення коефіцієнта важливості за допомогою методики Фішберна, парне порівняння, гіпотезу Пурто тощо. Вони усі відрізняються коефіцієнтами, нормами, використанням логарифмічних шкал, хоча їхнім завданням є визначення порядку слів, фраз без глибинного аналізу їхньої тональності, емоційного забарвлення і відношення між ними. В результаті розроблено платформу для розрахункової інтегрованої оцінки, яка дасть змогу визначити думку користувача, автора тощо.

1. Pang B. Opinion Mining and Sentiment Analysis / B. Pang, L. Lee // Foundations and Trends in Information Retrieval: Vol. 2. No. 1–2, 2008.

2. Данилюк І. Г. Технологія автоматичного визначення тематики тексту [Текст] / І. Г. Данилюк // Лінгвістичні студії: зб. наук. пр. Вип. 17 / уклад.: Анатолій Загнітко (наук. ред.) та ін. – Донецьк : ДонНУ, 2008. – С. 290–293.

3. Литвин В. В. Метод квазіреферування текстових документів на основі онтології предметної області / В. В. Литвин, Т. І. Черна, В. М. Ковалевич // Відбір і обробка інформації, Вип. № 41(117). – 2014. – С. 100–108.

4. Медиковський М. О. Дослідження ефективності визначення вагових коефіцієнтів важливості / М. О. Медиковський, О. Б. Шуневич // Вісник Хмельницького національного університету. – 2011.№ 5. – С. 176–182.

5. Хомів Б. А. Компаративний аналіз математичних моделей, методів та засобів оцінювання опінії в текстових даних інтернет-ресурсів / Б. А. Хомів, С. А. Лупенко, А. С. Сверстюк // Вісник Хмельницького національного університету. – 2011. – № 6. – С. 7–16.

6. Чалая Л. Э. Меры важности концептов в семантической сети онтологической базы знаний [Текст] / Л. Э. Чалая, Ю. Ю. Шевякова, А. Ю. Шафроненко // Матеріали другої міжнар. наук.- техн. конф. “Сучасні напрями розвитку інформаційно-комунікаційних технологій та засобів управління”. – К. : КДАВТ, 2011. – С. 51.

7. Шаховська Н. Б., Нога Р. Ю. Аналітичний огляд методів та засобів опрацювання текстової інформації // Інформаційні системи та мережі. –№ 715. – Л. : Вид-во Львівської. політехніки, 2011. – С. 215–223.

8. Інтернет-ресурс TF-IDF. Режим доступу: [https://ru.wikipedia.org/wiki/TF-IDF].

9. Інтернет-ресурс Okapi. – Режим доступу: [https://ru. wikipedia.org/ wiki/Okapi_BM25].

10. Інтернет-ресурс. – Режим доступу: [https://habrahabr. ru/post/149605/].

11. Wu H. and Luk R. and Wong K. and Kwok K. Interpreting TF-IDF term weights as making relevance decisions // ACM Transactions on Information Systems, 26 (3). 2008.

12. Katrin ERK. Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass, 2012, 6.10: 635–653.

13. Інтернет-ресурс. – Режим доступу: [http://nlpx.net/archives/179].

Шаховська Н. Б. Шкалювання емоційно забарвлених слів для використання у методах класифікації тональності / Н. Б. Шаховська, Х. Ю. Гірак // Вісник Національного університету «Львівська політехніка». Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2017. — № 872. — С. 195–203.