The article offers operators use a modified initialization and ant crossing and genetic algorithms to solve the transport problem in tourism. By analyzing the behavior of ant colonies, such as finding the shortest route through the provision of pheromone function and crossing two solutions genetic algorithm developed methods and algorithms such operations: search for the optimal route, costing resources, search distance, time, route, storing executed routes. In the present work description created system for mobile phones operating system IOS, which performs all above listed transactions. Testing mobile app by “At first test”.
1. Kazharov A. A. Murashyni alhorytmy dlia vyrishennia transportnykh zadach, Kazharov A. A., Kureichyk V. M., Rosiiska akademiia nauk. Teoriia i systemy upravlinnia, 2010, P. 32–45.
2. Yemelianova T.S. Rozviazuvannia etalonnykh transportnykh zadach z klasternym roztashuvanniam kliientiv iz vykorystanniam henetychnykh alhorytmiv, T. S. Yemelianova, Nechitki systemy i obchyslennia (NSMV-2008): naukova konf. z mizhnar. uchast, 2008, P. 195–199.
3. Hladkov L. A. Henetychni alhorytmy: tutorial, L. A. Hladkov, V. V. Kureichyk, V. M. Kureichyk, M ., Fizmat,2006, P. 320.
4. Horiachev Yu. V. Henetychni alhorytmy bahatokryterialnoi konfliktnoi optymizatsii./ Yu. V. Horiachev, M., 2001, P. 102.
5. Kureichyk V. V. Zastosuvannia henetychnoho alhorytmu rozviazannia zadachi tryvymirnoi upakovky, V. V. Kureichyk, D. V. Zaruba, D. Yu. Zaporozhets, Novyny PFU. Tekhnichni nauky, 2012, P. 8–14.
6. Bova V. V. Intehrovana pidsystema hibrydnoho i kombinovanoho poshuku v zadachakh proektuvannia ta upravlinnia, Bova V. V., Kureichyk V. V., PFU. Tekhnichni nauky, 2010, P. 37–42.
7. Kureichyk V. M. Poshukova adaptatsiia: teoriia i praktyka, V. M. Kureichyk, B. K. Lebediev, O. K. Lebediev, M., Fizmat, 2006, P. 272.
8. Rozrobka i analiz henetychnoho ta hibrydnoho alhorytmu dlia rozviazuvannia zadach dyskretnoi optymizatsii, A. V. Yermeiev: avtoref. dys. … kand. tekh. nauk, Omsk, 2000, P. 22.
9. Hvozdiev S. E. Matematychne prohramuvannia, S. E. Hvozdiev, Novosybirsk: NHASU – 2001, P. 96.
10. Boba- rykin V. A. Matematychni metody rozviazuvannia avtotransportnykh zadach, V. A. Bobarykin, SZPI, 1986, P. 83.
11. Alieksieiev A. O., Transportna zadacha po kryteriiu chasu pry obmezhenii kilkosti transportnykh resursiv, A. O. Alieksieiev, Matematychni metody optymizatsii i upravlinnia v skladnykh systemakh. KHU, 1984, P. 60–65.
12. Verkhovskyi B. S. Zadachi liniinoho prohramuvannia typu transportnykh, B. S. Verkhovskyi, DAN SSSR, 1963, V. 151, No 3, P. 515–518.