Models Andmethods for Forecasting Recommendations for Collaborative Recommender Systems

2018;
: pp. 68 - 75
Автори: 
Mykhaylo Lobur, Mykhaylo Shvarts, Yuriy Stekh

CAD department, Lviv Polytechnic National University, S. Bandery Str., 12, Lviv, 79013, UKRAINE

E-mail: yuriy.v.stekh@lpnu.ua

This article analyzes the current state of models and methods for constructing recommender systems. The main classes of tasks that solve recommender systems are highlighted. The features of the application of the method of collaborative (joint) filtering are shown. A mixed numerical-categorical clustering method for searching for user groups that uses numerical rating and demographic characteristics of users has been developed, a hybrid method for searching for user groups has been developed that uses the coefficient of usersubject matrix sparseness.

  1. J. A. Konstan Recommender systems: from algorithms to user experience / J. A. Konstan J. A. // User Modeling and User-Adapted Interaction. – 2012 –Vol. 22. – No. 1–2. – P. 101–123.
  2. Schafer J.B. E-Commerce Recommendation Applications / J. B. Schafer J. B., J. A. Konstan, J. Riedl // Data Mining and Knowledge Discovery. – 2001. – Vol. 5. – No. 1–2. – P. 115–123.
  3. Sarwar B. Analysis of recommendation algorithms for e-commerce / B. Sarwar, G. Karypis, J. Konstan, J. Riedl // In Proceedings of the 2nd ACM conference on Electronic.— Minnesota, USA – October 17–20, 2000. – P. 158–167.
  4. Pu P, Chen L, Hu R. A user-centric evaluation framework for recommender systems / P. Pu, L. Chen, R. Hu // In: Proceedings of the fifth ACM conference on Recommender Systems (RecSys’11), ACM.— New York, NY, USA. – 2011. – P. 57–164.
  5. Candillier L. Comparing State-of-the-Art Collaborative Filtering Systems. / L. Candillier, F. Meyer, M. Boullé. // In Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, LNCS. – Vol. 4571. – 2007. – P. 548–562.
  6. Su X., Khoshgoftaar T. M. A survey of collaborative filtering techniques / X. Su, T. M. Khoshgoftaar // Adv. Artif. Intell. — Vol. 4571. – 2007 – P. 1–19.
  7. Isinkaye F. O. Recommendation systems: Principles, methods and evaluation / F. O. Isinkaye F. O., Y. O. Folajimi, B. A. Ojokoh // Egyptian Informatics Journal. – Vol. 16. – 2015. – P. 261–273.
  8. Das D. A Survey on Recommendation System / D. Das, L. Sahoo, S. Datta // International Journal of Computer Applications. – Vol. 160. – No.. 7. – 2017. – P. 6–10.
  9. Bobadilla J. Recommender systems survey / J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez // Knowledge-Based Systems. – Vol. 46. – 2013. – P. 109–132.
  10. Resnick P., Varian H. R. Recommender systems / P. Resnick, H. R. Varian // Communications of the ACM. – Vol. 40. – 1997. – P. 56–58.
  11. G. Adomavicius, A. Tuzhilin Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions / Adomavicius G., Tuzhilin A. // IEEE Transactions on Knowledge and Data Engineerin. – Vol. 17. – 2005. – P. 734–749.
  12. Jameson A., Smyth B. Recommendation to groups / Jameson A., Smyth B. // In The adaptive web: methods and strategies of web personalization. – 2007. – P. 596–627.
  13. Konstan J. GroupLens: applying collaborative filtering to usenet news. / J. Konstan, B. Miller, D. Maltz, J. Herlocker, L. Gordon, J. Riedl // Commun. ACM – Vol. 40. – No. 3. – 1997. – P. 77–87.
  14. J. Masthoff Group modeling: selecting a sequence of television items to suit a group of viewers / J. Masthoff // User Model. User-Adap. Inter. – Vol. 14. – No. 1. – 2004 – P.37–85.
  15. L. Boratto, S. Carta, “State-ofthe-art in group recommendation and new approaches for automatic identification of groups,” / L. Boratto, S. Carta // In Information Retrieval and Mining in Distributed Environments. – vol. 324. – Springer Berlin Heidelberg – 2011. – P. 1–20.
  16. Guha S. Rock: A robust clustering algorithm for categorical attributes / S. Guha, R. Rastogi, K. Shim // Information Systems. – vol. 25, No. 5. – 2000. – P. 345–366.