Automotive transport plays a crucial role in the functioning and development of any country's economy. In Ukraine, it accounts for over half of passenger transportation and three-quarters of freight transportation. A promising development direction is using electric and hybrid vehicles in transportation logistics. It also fosters advancements in battery production technologies, components of hybrid power units, recycling, and the country's transportation infrastructure. Modern vehicle hybridization combines the advantages of traditional internal combustion engines (ICE) and electric drives. The efficiency of hybrid power units can be considered from design and thermodynamic perspectives. The design approach requires the development of new materials and manufacturing technologies, necessitating significant resource expenditures. The thermodynamic approach involves modeling and optimizing thermal processes occurring in the ICE within hybrid power units. The aim of this study is to identify opportunities for improving heat and mass transfer processes in a reciprocating engine to ensure the energy efficiency of a vehicle's hybrid power unit. Heat and mass transfer processes in the ICE are described by a system of differential equations that account for heat transfer in various environments (working gas, cylinder walls, coolant), considering key parameters such as wall temperatures, gas temperatures, heat transfer coefficients, and combustion kinetics. Several scenarios were examined to study the overall heat and mass transfer process. The first scenario assumes constant temperatures of gases and ICE walls, resulting in a steady heat transfer coefficient. The second scenario involves overloading, leading to increased heat loss through the walls and elevated thermal stress on the cooling system. The third scenario considers a decrease in ambient temperature. This study modeled the dependence of engine wall temperatures over time for these three operating conditions, enabling control of thermal modes and prediction of ICE performance to enhance the efficiency of the vehicle's hybrid power unit. It was found that increasing the temperatures of gases and walls affects engine operation duration, the effectiveness of recovered heat utilization, and the optimization of hybrid power unit performance. The more heat recovered during engine operation, the longer it operates with minimal heat loss and maximum efficiency.
1. Lynnyk, I. E., Lezhneva, O. I., Dorozhko, Ye. V., Vakulenko, K. Ye., Sokolova, N. A. & Afanas'yeva, I. A. (2020). Ekolohichni aspekty avtotransportnoho kompleksu [Environmental aspects of the road transport sector]. Kharkiv: Vydavnytstvo «Smuhasta typohrafiya» (in Ukrainian).
2. Lyashuk, O. L., Plekan, U. M., Tson, O. P., Gevko, B. R. (2023). Rozvytok tekhnolohii hibrydnykhsylovykh ustanovok avtomobiliv [Development Technologies of Cars Hybrid Power Plants]. Tsentralnoukrainskyi naukovyi visnyk. Tekhnichni nauky [Central Ukrainian Scientific Bulletin. Technical Sciences]. 8(39). 139-146. DOI: 10.32515/2664-262X.2023.8(39).1.139-146 (in Ukrainian).
https://doi.org/10.32515/2664-262X.2023.8(39).1.139-146
3. Muratori, M., Alexander, M., Arent, D., Bazilian, M., Cazzola, P., Dede, E. M., ... & Ward, J. (2021). The rise of electric vehicles - 2020 status and future expectations. Progress in Energy, 3(2), 022002. DOI: 10.1088/2516-1083/abe0ad (in English).
https://doi.org/10.1088/2516-1083/abe0ad
4. Pivnyak, G., Olishevska, V., Olishevskiy, H., Lutsenko, I., Lysenko, A., & Sala, D. (2024). Comprehensive study on electric vehicles and infrastructure for sustainable development in Ukraine. In E3S Web of Conferences (Vol. 567, p. 01025). EDP Sciences. DOI: 10.1051/e3sconf/202456701025 (in English).
https://doi.org/10.1051/e3sconf/202456701025
5. Kuzhelnyi , Y., Venzheha , V., Pasov, H., & Klimenko, V. (2023). Analysis of structures and application of different types of engines in cars. Avtomobilnyi transport [Automobile Transport], (52), 89-97. DOI: 10.30977/AT.2219-8342.2023.52.0.10 (in English).
https://doi.org/10.30977/AT.2219-8342.2023.52.0.10
6. Krivda, V. V., Sakno, O. P., Olishevska, V. Ye. (2024). Obgruntuvannia neironnoho sposobu kontroliu vydu zhyvlennia dvz zalezhno vid umov roboty [Justification of a neural method for controlling the type of power supply of an internal combustion engine depending on operating conditions]. Avtoshliakhovyk Ukrayiny, 4, 15-22. DOI: 10.33868/0365-8392-2024-4-281-15-22 (in Ukrainian).
https://doi.org/10.33868/0365-8392-2024-4-281-15-22
7. Olishevska, V. Ye. & Olishevskyy, H. S. (2024). Obgruntuvannia ratsionalnoho rukhomoho skladu pidpryiemstva v umovakh perekhodu do elektromobiliv [Substantiating rational rolling stock at an enterprise in the transition to electric vehicles]. Avtoshliakhovyk Ukrayiny, 2, 35-44. DOI: 10.33868/0365-8392-2024-2-279-35-44 (in Ukrainian).
https://doi.org/10.33868/0365-8392-2024-2-279-35-44
8. Shapko, V. F. (2023). Avtomobilni dvyhuny. Osnovy teorii dvyhuniv vnutrishnoho zghoriannia [Automotive engines. Dreams of internal combustion engine theory]. Retrieved from: https://document.kdu.edu.ua/ monogr/2023_106.pdf (in Ukrainian).
9. Sharma, S., Panwar, A. K., & Tripathi, M. M. (2020). Storage technologies for electric vehicles. Journal of traffic and transportation engineering (English edition), 7(3), 340-361. DOI: 10.1016/j.jtte.2020.04.004 (in English).
https://doi.org/10.1016/j.jtte.2020.04.004
10. Barbosa, T. P., Eckert, J. J., Roso, V. R., Pujatti, F. J. P., da Silva, L. A. R., & Gutiérrez, J. C. H. (2021). Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle. Energy, 235, 121361. DOI: 10.1016/j.energy.2021.121361 (in English).
https://doi.org/10.1016/j.energy.2021.121361
11. Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. DOI: 10.1016/j.treng.2020.100005 (in English).
https://doi.org/10.1016/j.treng.2020.100005
12. Dejima, K., & Nakabeppu, O. (2024). Conduction-strain model for heat transfer characterization in internal combustion engines. International Journal of Engine Research, 25(6), 1191-1205. DOI: 10.1177/14680874241227256 (in English).
https://doi.org/10.1177/14680874241227256
13. Şener, R., Nilsen, C. W., Biles, D. E., & Mueller, C. J. (2023). A computational investigation of engine heat transfer with ducted fuel injection. International Journal of Engine Research, 24(8), 3328-3341. DOI: 10.1177/14680874221149321 (in English).
https://doi.org/10.1177/14680874221149321
14. Yuan, R., Fletcher, T., Ahmedov, A., Kalantzis, N., Pezouvanis, A., Dutta, N., ... & Ebrahimi, K. (2020). Modelling and Co-simulation of hybrid vehicles: A thermal management perspective. Applied Thermal Engineering, 180, 115883. DOI: 10.1016/j.applthermaleng.2020.115883 (in English).
https://doi.org/10.1016/j.applthermaleng.2020.115883
15. Previati, G., Mastinu, G., & Gobbi, M. (2022). Thermal management of electrified vehicles - A review. Energies, 15(4), 1326. DOI: 10.3390/en15041326 (in English).
https://doi.org/10.3390/en15041326
16. Wei, C., Hofman, T., Ilhan Caarls, E., & van Iperen, R. (2020). A review of the integrated design and control of electrified vehicles. Energies, 13(20), 5454. DOI: 10.3390/en13205454 (in English).
https://doi.org/10.3390/en13205454
17. Thiagarajan, C., Prabhahar, M., Prakash, S., Senthil, J., & Kumar, M. S. (2020). Heat transfer analysis and optimization of engine cylinder liner using different materials. Materials Today: Proceedings, 33, 778-783. DOI: 10.1016/j.matpr.2020.06.173 (in English).
https://doi.org/10.1016/j.matpr.2020.06.173
18. Ryndyuk, D. V., Peshko, V. A. (2021). Matematychne modeliuvannia teplovykh protsesiv v enerhetytsi ta promyslovosti [Mathematical modelling of thermal processes in energy and industry]. Retrieved from: https://ela.kpi.ua/server/api/core/bitstreams/7806b21c-f8b1-49f6-82e8-2a... (in Ukrainian).