EXPRESS ANALYSIS OF TRANSIENT ELECTROMAGNETIC DATA ACQUIRED ON THE WASTE RESERVOIR DAM IN STEBNYK

2019;
: 67-71
https://doi.org/10.23939/ujit2019.01.067
Received: September 08, 2019
Accepted: November 20, 2019

Цитування за ДСТУ: Ладанівський Б. Т., Савків Л. Г., Сапужак О. Я., Романюк О. І., Підвірний О. І., Коляденко В. В., Сироєжко О. В., Дещиця С. А.. Експрес-аналіз даних зондування становленням електромагнітного поля, отриманих на дамбі хвостосховища у Стебнику. Український журнал інформаційних технологій. 2019, т. 1, № 1. С. 67–71.

Citation APA: Ladanivskyy, B. T., Savkiv, L. H., Sapuzhak, O. Ya., Romanyuk, O. I., Pidvirny, O. I., Kolyadenko, V. V., Syroezhko, O. V., & Deshchytsya, S. A. (2019). Express analysis of transient electromagnetic data acquired on the waste reservoir dam in Stebnyk. Ukrainian Journal of Information Technology, 1(1), 67–71. https://doi.org/10.23939/ujit2019.01.067

1
Carpathian branch of Subbotin Institute of geophysics of NAS of Ukraine; Lviv Polytechnic National University (SD ICSIT)
2
Carpathian branch of Subbotin Institute of geophysics of NAS of Ukraine
3
Carpathian Branch of Subbotin Institute of geophysics of NAS of Ukraine
4
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine
5
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine
6
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine
7
Carpathian branch of Subbotin Institute of geophysics of NAS of Ukraine
8
Carpathian Branch of Subbotin Institute of Geophysics of NAS of Ukraine

Electro­mag­ne­tic (EM) met­hods of ge­ophysics al­low to ima­ge the sub­sur­fa­ce con­duc­ti­vity distri­bu­ti­on by analyzing da­ta me­asu­red on the Earth sur­fa­ce. The tran­si­ent electro­mag­ne­tic (TEM) so­un­ding met­hod is a ti­me-do­ma­in control­led so­ur­ce one which uti­li­ze a non-sta­ti­onary tran­si­ent pro­cess of the EM fi­eld de­ca­ying in the con­duc­ti­ve me­di­um due to the step cur­rent ex­ci­ta­ti­on which is descri­bed by the He­avi­si­de functi­on. The mat­he­ma­ti­cal and al­go­rithmic to­ols for express analysis of such ex­pe­ri­men­tal da­ta ac­qui­red for the TEM met­hod are pre­sen­ted in this ar­tic­le, the prac­ti­cal appli­ca­ti­on of which is so­me­ti­mes im­por­tant for ex­pe­ri­men­tal in fi­eld me­asu­re­ments, sin­ce it al­lows as to ma­ke im­me­di­ate de­ci­si­ons on op­ti­mi­za­ti­on of ex­pe­ri­men­tal fi­eld work as well as to qua­li­ta­ti­vely es­ti­ma­te the sta­te of the ob­ject un­der study.

The pro­po­sed express analysis al­go­rithm is de­ve­lo­ped on the ba­sis of a wi­dely used transfor­ma­ti­on of the ex­pe­ri­men­tal TEM cur­ve, al­so known as the S-in­ver­si­on, which in turn is ba­sed on the appro­xi­ma­ti­on of a con­duc­ti­ve half-spa­ce by a thin she­et which is im­mer­sing in­to a non-con­duc­ti­ve half-spa­ce with the de­ca­ying of tran­si­ent pro­cess in the EM fi­eld. To re­du­ce the influ­en­ce of no­ise in­to the me­asu­red da­ta, we carrying out the appro­xi­ma­ti­on of the ex­pe­ri­men­tal so­un­ding cur­ves ac­co­un­ting se­ve­ral as­pects: the so­lu­ti­ons of eq­ua­ti­ons which descri­be the pe­net­ra­ti­on of EM fi­eld in­to a con­duc­ting me­di­um; the functi­on of the cu­bic spli­ne; and ele­ments of mat­he­ma­ti­cal analysis of con­tin­uo­us functi­ons.

Ac­cor­ding to pro­fi­le me­asu­re­ments, one di­men­si­onal mo­dels of re­sis­ti­vity distri­bu­ti­on we­re ob­ta­ined using the cre­ated express analysis to­ols and a pseu­do two di­men­si­onal mo­del of the geoelectric cross-sec­ti­on of the was­te re­ser­vo­ir dam which is next to the Stebnyk town was construc­ted on the­ir ba­sis. The analysis of the ob­ta­ined mo­dels al­lo­wed us to de­tect two are­as whe­re it is de­si­rab­le to carry out ad­di­ti­onal stu­di­es to cla­rify the ge­olo­gi­cal sit­ua­ti­on. Of co­ur­se, al­go­rithms for in­ver­si­on of ex­pe­ri­men­tal da­ta, both as from a mat­he­ma­ti­cal po­int of vi­ew as well as from the po­int of vi­ew of al­go­rithm imple­men­ta­ti­on, are much mo­re compli­ca­ted. Ho­we­ver, if one imple­ments a fast and ef­fi­ci­ent one-di­men­si­onal in­ver­si­on al­go­rithm for the TEM da­ta inste­ad of the transfor­ma­ti­on men­ti­oned abo­ve, it will be pos­sib­le to sig­ni­fi­cantly impro­ve the re­li­abi­lity of the re­sult.

  1. Ge, J., Eve­rett, M. E., & We­iss, C. J. (2012). Frac­ti­onal dif­fu­si­on analysis of the electro­mag­ne­tic fi­eld in frac­tu­red me­dia. Part I: 2D appro­ach, Ge­ophysics, 77, WB213–WB218, https://doi.org/10.1190/GEO2012-0072.1.
  2. Ge, J., Eve­rett, M. E., & We­iss, C. J. (2015). Frac­ti­onal dif­fu­si­on analysis of the electro­mag­ne­tic fi­eld in frac­tu­red me­dia. Part 2: 3D appro­ach, Ge­ophysics, 80, E175–E185, https://doi.org/10.1190/GEO2014-0333.1.
  3. Grytsiuk, Yu. I., & Leshkevych, I. F. (2017). The Problems of Definition and Analysis of Software Requirements. Scientific Bulletin of UNFU, 27(4), 148–158. https://doi.org/10.15421/40270433.
  4. Hrytsiuk, Yu. I., & Andrushchakevych, O. T. (2018). Means for determining software quality by metric analysis methods. Scientific Bulletin of UNFU, 28(6), 159–171. https://doi.org/10.15421/40280631.
  5. Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Management Features Process of Developing Software Requirements. Scientific Bulletin of UNFU, 28(8), 161–169. https://doi.org/10.15421/40280832.
  6. Hrytsiuk, Yu. I., & Nemova, E. A. (2018). Peculiarities of Formulation of Requirements to the Software. Scientific Bulletin of UNFU, 28(7), 135–148. https://doi.org/10.15421/40280727.
  7. Ka­me­netsky, F. M., Stettler, E. H., & Tri­gu­bo­vich, G. M. (2010). Tran­si­ent Geo-Electro­mag­ne­tiсs. Mu­nich, Lud­wig-Ma­xi­mi­li­an Uni­ver­sity, Ve­la Ver­lag, 304 p.
  8. McNe­ill, J. D. (1980). Appli­ca­ti­ons of tran­ci­ent electro­mag­ne­tic techniq­ues. Ge­onics Ltd., On­ta­rio, techni­cal no­te TN 7, 17 p.
  9. Me­ju, M. A. (1995). Simple ef­fec­ti­ve re­sis­ti­vity-depth transfor­ma­ti­ons for in­fi­eld or re­al-ti­me da­ta pro­ces­sing. Com­pu­ter & Ge­os­ci­en­ces, 21, 985–992.
  10. Me­ju, M. A. (1998). A simple met­hod of tran­si­ent electro­mag­ne­tic da­ta Analysis. Ge­ophysics, 63, 405–410.
  11. Si­do­rov, V. A. (1985). Pul­se in­duc­ti­ve electro­mag­ne­tic pros­pec­ting. Mos­cow: Ned­ra, 192 p. [In Rus­si­an].
  12. Val­li­ana­tos, F. (2017). Tran­si­ent Electro­mag­ne­tic Met­hod in the Ke­ri­tis ba­sin (Cre­te, Gre­ece): Evi­den­ce of hi­erarchy in a complex ge­olo­gi­cal struc­tu­re in vi­ew of Tsal­lis distri­bu­ti­on. An­nals of Ge­ophysics, 60, GM675, https://doi.org/10.4401/ag-7551.
  13. Val­li­ana­tos, F., Kou­li, M., & Ka­lis­pe­ri, D. (2018). Evi­den­ce of Hi­erarchy in the Complex Frac­tu­red System of Ge­ro­po­ta­mos (Cre­te, Gre­ece), as Extrac­ted from Tran­si­ent Electro­mag­ne­tic Res­pon­ses. Pu­re and Appli­ed Ge­ophysics, 175, 2895–2904, https://doi.org/10.1007/s00024-018-1835-8.
  14. Xue, G.-Q., Bai, C.-Y., Yan, S., Gre­en­halgh, S., Li, M.-F., & Zhou, N.-N. (2012). De­ep so­un­ding TEM in­ves­ti­ga­ti­on met­hod ba­sed on a mo­di­fi­ed fi­xed central-lo­op system. Jo­ur­nal of Appli­ed Ge­ophysics, 76, 23–32, https://doi.org/10.1016/j.jappgeo.2011.10.007.
  15. Zhda­nov, M. S. (1986). Electro­mag­ne­tic pros­pec­ting. Mos­cow: Ned­ra, 316 pp. [In Rus­si­an].