Generalized design diagram and mathematical model of suspension system of vibration-driven robot
Received: June 28, 2022
Revised: August 26, 2021
Accepted: December 28, 2021
Lviv Polytechnic National University

Problem statement. Mobile robotic systems are widely used in various fields of industry and social life: from small household appliances to large-size road-building machinery. Specific attention of scientists and designers is paid to the vibration-driven locomotion systems able to move in the environments where the use of classical wheeled and caterpillar robots is impossible or inefficient. Purpose. The main objective of this paper consists in generalizing the actual research results  dedicated  to various design diagrams and mathematical models of suspension systems of mobile vibration-driven robots. Methodology. The differential equations describing the robot motion are derived using the Lagrange-d'Alembert principle. The numerical modeling is carried out in the Mathematica software by solving the derived system of differential equations with the help of the Runge-Kutta methods. The verification of the obtained results is performed by computer simulation of  the  robot  motion in the SolidWorks and MapleSim software. Findings  (results).  The time dependencies of the basic kinematic parameters (displacement, velocity, acceleration) of the robot’s vibratory system are analyzed. The possibilities of maximizing the robot translational velocity are considered. Originality (novelty). The paper generalizes the existent designs and mathematical models of  the mobile vibration-driven robots’ suspensions and studies the combined four-spring locomotion system moving along a rough horizontal surface. Practical value. The obtained results can be effectively used by researchers and designers of vibration-driven locomotion systems while improving the existent designs and developing the new ones. Scopes of further investigations. While carrying out further investigations on the subject of the paper, it is necessary to solve the problem of optimizing the robot’s oscillatory system parameters in order to maximize its translational velocity. 

[1]  L.  Jaulin,  Mobile  Robotics,  2nd  ed.  Hoboken,  NJ,  USA:  John  Wiley  &  Sons,  Inc.,  2019. 
[2]  N.  Bolotnik,  I.  Zeidis,  K.  Zimmermann,  and  S.  Yatsun,  “Vibration  driven  robots”,  in  Proc. 56th International  Scientific  Colloquium  “Innovation  in  Mechanical  Engineering  –  Shaping  the  Future”, Ilmenau University of Technology, Ilmenau, Germany, September 12–16, 2011, pp. 1–6. 
[3] Y. Yan, Y. Liu, J. Páez Chávez, F. Zonta, and A. Yusupov, “Proof-of-concept prototype development of the self-propelled  capsule  system  for  pipeline  inspection,”  Meccanica,  Vol.  53,  No.  8, pp. 1997–2012, Jun. 2018. 
[4]  I.  Loukanov,  V.  Vitliemov,  S.  Stoyanov,  and  S.  Stoyanov,  “Design  developments  of  vibration-driven robots,” in Proc. 56th Science Conference of Ruse University, Ruse, Bulgaria, 2017, pp. 50–59. 
[5] R. M. Morariu-Gligor, A. V. Crişan, and F. M. Şerdean, “Optimal design of an one-way plate compactor,” ACTA TECHNICA NAPOCENSIS, vol. 60, no. 4, pp. 557–564, Nov. 2017. 
[6] L. Crisóstomo, N. F. Ferreira, and V. Filipe, “Robotics services at home support,” International Journal of Advanced Robotic Systems, vol. 17, no. 4, pp. 1–11, 2020. 
[7] K. Ragulskis et al., “Investigation of dynamics of a pipe robot with vibrational drive and unsymmetric with respect to the direction of velocity of motion dissipative forces,” Agricultural Engineering, vol. 52, pp. 1–6, 2020. 
[8] Y. Yan, Y. Liu, L. Manfredi, and S. Prasad, “Modelling of a vibro-impact self-propelled capsule in the small intestine,” Nonlinear Dynamics, vol. 96, no. 1, pp. 123–144, 2019. 
[9] B. Guo, Y. Liu, R. Birler, and S. Prasad, “Self-propelled capsule endoscopy for small-bowel examination: Proof-of-concept and model verification,” International Journal of Mechanical Sciences, vol. 174, Article ID 105506, 2020. 
[10] V. Korendiy, “Substantiation of parameters and motion modelling of two-mass mobile vibratory system with two unbalanced vibration exciters,” Avtomatizacìâ virobničih procesìv u mašinobuduvannì ta priladobuduvannì, vol. 52, pp. 16–31, 2018. 
[11]  M.  Schulke,  L.  Hartmann,  and  C.  Behn,  “Worm-like  locomotion  systems:  development  of  drives  and selective anisotropic friction structures,” in Proc. 56th International Scientific Colloquium “Innovation in Mechanical Engineering – Shaping the Future”, Ilmenau, Germany, September 12–16, 2011, pp. 1–21. 
[12] V. Korendiy, “Dynamics of two-mass mobile vibratory robot with electromagnetic drive and vibro-impact operation  mode,”  Ukrainian  Journal  of  Mechanical  Engineering  and  Materials  Science,  vol.  4, no.  2,  pp.  80–93, 2018. 
[13]  V.  Du  Nguyen  and  N.  T.  La,  “An  improvement  of  vibration-driven  locomotion  module  for  capsule robots,”  Mechanics  Based  Design  of  Structures  and  Machines,  vol.  49,  no.  7,  pp.  1–15, 2020.  
[14]  O.  Lanets,  O.  Kachur,  V.  Korendiy,  and  V.  Lozynskyy,  “Controllable  crank  mechanism  for  exciting oscillations  of  vibratory  equipment,”  in  Lecture  Notes  in  Mechanical  Engineering,  pp.  43–52, 2021. 
[15]  V.  Korendiy,  V.  Gursky,  O.  Kachur,  V.  Gurey,  O.  Havrylchenko,  and  O.  Kotsiumbas,  “Mathematical modeling  of  forced  oscillations  of  semidefinite  vibro-impact  system  sliding  along  rough horizontal  surface,” Vibroengineering Procedia, vol. 39, pp. 164–169, 2021. 
[16] G. Cicconofri, F. Becker, G. Noselli, A. Desimone, and K. Zimmermann, “The inversion of motion of Bristle Bots: analytical and experimental analysis,” in Parenti-Castelli V., Schiehlen W. (eds), ROMANSY 21 – Robot Design, Dynamics and Control. CISM International Centre for  Mechanical Sciences (Courses and Lectures),  vol. 569, Springer, Cham., 2016, pp. 225–232. 
[17] D. Kim, Z. Hao, A. R. Mohazab, and A. Ansari, “On the forward and backward motion of milli-bristle-bots,”  International  Journal  of  Non-Linear  Mechanics,  vol.  127,  Article  ID  103551,  2020. 
[18] D. W. Choi, C. W. Lee, D. Y. Lee, D. W. Lee, and H. U. Yoon, “A hybrid soft actuator inspired by grass-spike: Design approach, dynamic model, and applications,” Applied Sciences (Switzerland), vol. 10, no. 23, pp. 1–15, 2020. 
[19] C. Hastings, K. Mischo, and M. Morrison, Hands-on Start to Wolfram Mathematica and Programming with the Wolfram Language, 2nd ed. Champaign, IL, USA: Wolfram Media, Inc., 2016. 
[20] R. Müller, Modellierung, Analyse und Simulation Elektrischer und Mechanischer Systeme mit Maple und MapleSim [Modeling, Analysis and Simulation of Electrical and Mechanical Systems with Maple and MapleSim], 2nd ed. Wiesbaden, Germany: Springer Vieweg, 2020, (in German). 
[21] K.-H. Chang, Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2021. Mission, KS, USA: SDC Publications, 2021.