Cloud Computing With Resource Allocation Based on Ant Colony Optimization

: cc. 104 - 110
Lviv Polytechnic National University, Ukraine
Lviv Polytechnic National University

In this study, we explore the intricacies of cloud computing technologies, with an emphasis on the challenges and concerns pertinent to resource allocation. Three opti- mization techniques—Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Genetic Algorithm (GA) — have been meticulously analyzed concerning their applications, objectives, and operational  methodologies. The study underscores these algorithms' pivotal role in enhancing cloud resource optimization, while also elucidat- ing their respective merits and limitations.

As the complexity of cloud computing escalates, devising efficacious strategies for resource management and alloca- tion becomes imperative. Such strategies are paramount in aiding organizations in cost containment and performance amplification. The ensuing comparative analysis has been crafted to offer a holistic insight into the three algorithms, thus empowering cloud providers to judiciously select an optimization technique that aligns with the unique de- mands and challenges of their cloud computing infrastructure.

  1. Dewangan B., Choudhury T., Toe T., Singh B., Nhu N., Tomar R., (2021). Cloud Autonomic Computing in Cloud Resource Management in Industry 4.0. Switzerland: Springer, pp. 123–195. DOI: https://doi=10.1007/978-3- 030-71756-8_9 
  2. Sehgal N., Bhatt. P., Acken J., (2020). Cloud Computing with Security, Concepts and Practices. Second edition. Switzerland: Springer, pp. 75–109. DOI: https://doi=10.1007/978-3-030-24612-9
  3. Cai J., Peng P., Huang X. and Xu B., (2020). A Hybrid Multi-Phased Particle Swarm Optimization with Sub Swarms, 2020 International Conference on Artificial Intel- ligence and Computer Engineering (ICAICE), Beijing, China, pp. 104–108. DOI: https://doi=10.1109/ ICAICE51518.2020.00026
  4. Kozlov O., (2021). Information Technology for Designing Rule bases of Fuzzy Systems using Ant Colony Optimiza- tion, International Journal of Computing, 20(4), pp. 471– 486. DOI:
  5. Arianyan E., Maleki D., Yari A. and Arianyan I., (2012). Efficient resource allocation in cloud data centers through genetic algorithm, 6th International Symposium on Tele- communications (IST),  Tehran, Iran,  pp.  566–570. DOI: https://doi=10.1109/ISTEL.2012.6483053
  6. Raj P., Vanga S., Chaudhary A., (2022). Cloud-native Computing: How to Design, Develop, and Secure Micros- ervices and Event-Driven Applications, John Wiley & Sons, pp. 129–163. DOI: 9781119814795.ch13
  7. Singh A., Indrusiak L., Dziurzanski P., (2022). Dynamic Resource Allocation in Embedded, High-Performance and Cloud Computing, e-book, Denmark:  River  Publishers, pp. 128–154. [Electronic resource]. – Available at: RP_E9788793519077.pdf (Accessed: 01 January 2023)
  8. Kochenderfer M. J., Wheeler T. A., (2019). Algorithms for Optimization. United Kingdom: MIT Press, pp. 125–189. DOI:
  9. Badar, Altaf Q. H., (2021). Evolutionary Optimization Algorithms. United States, CRC Press, pp. 113–218. DOI:
  10. Muliarevych O., (2016). Solving dynamic assymetrical Travelling Salesman Problem in conditions of partly un- known data, Lviv-Slavsk, Lviv Polytechnik Publ., TCSET'2016         vol.1,         pp.         446–448.         DOI: 7452084
  11. Jun S., Yatskiv N., Sachenko A. and Yatskiv V., (2012). Improved method of ant colonies to search independent data transmission routes in WSN, 2012 IEEE 1st Interna- tional Symposium on Wireless Systems (IDAACS-SWS), Offenburg, Germany, pp. 52–57. DOI:
  12. iu S., Li Z., (2017). A modified genetic algorithm for community detection in complex networks, 2017 Interna- tional Conference on Algorithms, Methodology, Models and Applications in  Emerging  Technologies (ICAMMAET), Chennai, India, pp. 1–3. DOI: ICAMMAET.2017.8186747
  13. Yichen L., Bo L., Chenqian Z. and Teng M., (2020). Intel- ligent Frequency Assignment Algorithm Based on Hybrid Genetic Algorithm, 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), Chongqing, China, pp. 461–467. DOI:
  14. Muliarevych O., (2022), Acceptance and shipping warehouse zones calculation using serverless approach, 12th Interna- tional Conference on Dependable Systems, Services and Technologies (DESSERT), Athens, Greece, pp. 1–6. DOI:
  15. Sampaio A. M. and Barbosa J. G., (2019). Enhancing Reliabil- ity of Compute Environments on Amazon EC2 Spot In- stances, 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, pp. 708– 715. DOI:
  16. Ekwe-Ekwe N. and Barker A., (2018). Location, Location, Location: Exploring Amazon EC2 Spot Instance Pricing Across Geographical  Regions, 18th IEEE/ACM Interna- tional Symposium on Cluster, Cloud and Grid Computing (CCGRID),  Washington,  DC,  USA,  pp.  370–373.  DOI:
  17. Ardagna D. and Pernici B., (2005). Global and local QoS constraints guarantee in Web service selection, IEEE In- ternational Conference on Web Services (ICWS'05), Or- lando,     FL,     USA,     2005,     pp.     805–806.     DOI:
  18. Tsiunyk B., Muliarevych O., (2022). Software System for Motion Detection and Tracking, Advances in Cyber- Physical Systems, 7(2), pp. 156–162. DOI: acps2022.02.156