Based on literary analysis, the effectiveness of a range of plants (aquatic: Lemna aoukikusa, Lemna minor, Spirodela polyrhiza, Lemna aequinoctialis; vetiver grass Chrysopogon zizanioides) for the purification of wastewater from antibiotics has been investigated. It has been found that the removal efficiency for various types of antibiotics and their concentrations reaches 70 percent or more. This suggests the potential application of these aquatic plants for phytoremediation of wastewater containing antibiotic contaminants.
1. Ali, Z., Waheed, H., G. Kazi, A., Hayat, A., & Ahmad, M. (2016). Chapter 16 - Duckweed: An Efficient Hyperaccumulator of Heavy Metals in Water Bodies. Plant Metal Interaction, 2016, 411-429. doi: https://doi.org/10.1016/B978-0-12-803158-2.00016-3
https://doi.org/10.1016/B978-0-12-803158-2.00016-3
2. Ansari, A. A., Naeem M., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, 46(4), 371-376.doi: https://doi.org/10.1016/j.ejar.2020.03.002
https://doi.org/10.1016/j.ejar.2020.03.002
3. Balarak, D., Mostafapour, F. K.,, Akbari, H., & Joghtaei, A. (2017). Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. Journal of Pharmaceutical Research International, 18(3), 1-13. doi: http://dx.doi.org/10.9734/JPRI/2017/35607
https://doi.org/10.9734/JPRI/2017/35607
4. Dhir, B. (2013). Phytoremediation: Role of Aquatic Plants in Environmental Clean-Up. Springer New Delhi. doi: https://doi.org/10.1007/978-81-322-1307-9
https://doi.org/10.1007/978-81-322-1307-9
5. Chugh, M., Kumar, L., Shah, M.P., & Bharadvaja, N. (2022). Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus, 7, 10129. doi: https://doi.org/10.1016/j.nexus.2022.100129
https://doi.org/10.1016/j.nexus.2022.100129
6. Gomes, M. P., Moreira Brito J. C., Rocha D., C., Navarro-Silva, M. A., & Juneau, P. (2020) Individual and combined effects of amoxicillin, enrofloxacin, and oxytetracycline on Lemna minor physiology. Ecotoxicology and Environmental Safety, Elsevier, 203, 11025. doi: https://doi.org/10.1016/j.ecoenv.2020.111025
https://doi.org/10.1016/j.ecoenv.2020.111025
7. Gao, P., Munir, M., & Xagoraraki, I. (2012). Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Science of The Total Environment, 421-422, 173-183. doi: https://doi.org/10.1016/j.scitotenv.2012.01.061
https://doi.org/10.1016/j.scitotenv.2012.01.061
8. Jendrzejewska, N., & Karwowska, E., (2018). The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Science and Technology, 77(9), 2320–2326. doi: 1https://doi.org/10.2166/wst.2018.153
https://doi.org/10.2166/wst.2018.153
9. Habaki, H., Thyagarajan, N., Li, Z., Wang, S., Zhang, J., & Egashira, R. (2023). Removal of antibiotics from pharmaceutical wastewater using Lemna Aoukikusa (duckweed). Separation Science and Technology, 58, 1491-1501. doi: https://doi: 10.1080/01496395.2023.2195544
https://doi.org/10.1080/01496395.2023.2195544
10. Huang, W., & Kong, R., & Chen, L., An, Y. (2022). Physiological responses and antibiotic-degradation capacity of duckweed (Lemna 1aequinoctialis) exposed to streptomycin. Frontiers in Plant Science, 13. doi: https://doi.org/10.3389/fpls.2022.1065199
https://doi.org/10.3389/fpls.2022.1065199
11. Maldonado, I., G. Moreno Terrazas, E., & Zirena Vilca, F. (2022). Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. Science of The Total Environment, 838, 156565. doi: https://doi.org/10.1016/j.scitotenv.2022.156565
https://doi.org/10.1016/j.scitotenv.2022.156565
12. Malovanyy, M. S., Soloviy, Kh. M., & Nykyforov, V. V. (2018). Conditions for development and cultivation of cyanobacteria for multi-target application (literature review). Environmental Problems, 3(1), 1-11.
13. Malovanyy, M., Tymchuk, I., Balandiukh, Iu., Soloviy, Kh., Zhuk, V., Kopiy, M., Stokalyuk, O., & Petrushka, K. (2021). Optimum collection and concentration strategies of hydrobionts excess biomass in biological surface water purifying technologies. Environmental Problems, 6(1), 40-47. doi: https://doi.org/10.23939/ep2021.01.040
https://doi.org/10.23939/ep2021.01.040
14. Mccutcheon, S., & Schnoor, J. (2004). Phytoremediation Transformation and Control of Contaminants. Environmental Science and Pollution Research, 11, 40. doi: https://doi.org/10.1007/BF02980279
https://doi.org/10.1007/BF02980279
15. Panja, S., Sarkar, D., & Datta, R. (2020). Removal of antibiotics and nutrients by Vetiver grass (Chrysopogon zizanioides) from secondary wastewater effluent. International Journal of Phytoremediation, 22, 764-773. doi: https://doi.org/10.1080/15226514.2019.1710813
https://doi.org/10.1080/15226514.2019.1710813
16. Singh, V., Pandey, B., & Suthar, S. (2018). Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere, 201, 492-502. doi: https://doi.org/10.1016/j.chemosphere.2018.03.010
https://doi.org/10.1016/j.chemosphere.2018.03.010
17. Singh, H., & Pant, G. (2023). Phytoremediation: Low input-based ecological approach for sustainable environment. Applied Water Science, 13. doi: http://dx.doi.org/10.1007/s13201-023-01898-2
https://doi.org/10.1007/s13201-023-01898-2
18. Soloviy, Kh., & Malovanyy, M. (2019). Freshwater Ecosystem Macrophytes and Microphytes: Development, Environmental Problems, Usage as Raw Material. Review. Environmental Problems, 4(3), 115-124. doi: https://doi.org/10.23939/ep2019.03.115