МОДЕЛЮВАННЯ ПРОЦЕСУ ІНДУКЦІЙНОГО НАГРІВУ ДЛЯ СИСТЕМ МАГНІТНОЇ ГІПЕРТЕРМІЇ

1
Lviv Polytechnic National University
2
Lviv Polytechnic National University
3
Lviv Polytechnic National University
4
Національний університет «Львівська політехніка»

Розглянуто проблеми застосування індукційного нагрівання (ІН) для реалізації магнітної гіпертермії. Аналіз результатів попередніх досліджень показав, що в межах біологічно безпечного діапазону магнітних полів змінного струму недостатня індукційна потужність нагрі­вання залишається однією із ключових перешкод для успішного клінічного застосу­вання магнітної гіпертермії. В роботі запропоновано кілька варіантів ефективних схемо­технічних рішень для системи ІН, досліджено їх вплив на параметри процесів нагрівання феритів та феромагнетиків. Створена у середовищі COMSOL Multiphysics модель індукцій­ного нагрівача дала змогу промоделювати розподіл густини струму та температури у ньому. Отримана модель дає змогу коректніше оцінити процеси, які відбуватимуться у живих тканинах, та здійснити симуляцію впливу типу матеріалу магнітних частинок та їх розмірів на значення температури нагрівання та електроспоживання приладу.

  1. ASM Handbook Volume 4C: Induction Heating and Heat Treatment. Editors: Valery Rudnev and George Totten.  ASM Handbook Volume 4C: Induction Heating and Heat Treatment.  US: ASM International, 2014. 820 p. ISBN: 978-1-62708-012-5.
  2. Lucia O., Maussion P., Dede E. J., Burdio J. Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Transactions on Industrial Electronics, 2013, Vol. 61 (n°5), pp. 2509–2520. 10.1109/TIE.2013.2281162.  
  3. Brezovich I. A. Ferromagnetics. In: Steeves RA, Palival BR, editors. Syllabus: A Categorial Course in Radiation Therapy. Presented at the 73rd Scientific Assembly and Annual Meeting of the Radiological Society of North America, 29 Nov. – 4 Dec., 1987; pp. 117–126.
  4. What Are the Advantages of Induction Heating? (2022) // https://jfheattreatinginc.com/2022/06/what-are-the-advantages-of-induction-heating/.
  5. Zuhe Wu, Zihang Zhuo, Dongyang Cai, Jian’an Wu, Jie Wang and Jintian Tang. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia. Technology and Health Care 23 (2015) S203–S209. DOI 10.3233/THC-150955.
  6. A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz & R. Felix (2009) Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia, International Journal of Hyperthermia, 25:7, 499–511, DOI: 10.3109/02656730903287790.
  7. Zhao, S.; Lee, S. Biomaterial-Modified Magnetic Nanoparticles γ-Fe2O3, Fe3O4 Used to Improve the Efficiency of Hyperthermia of Tumors in HepG2 Model. Appl. Sci. 2021, 11, 2017.
  8. Rotundo S, Brizi D, Flori A, Giovannetti G, Menichetti L, Monorchio A. Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. Sensors. 2022; 22(14):5132. https://doi.org/10.3390/s22145132 // https://www.mdpi.com/1424-8220/22/14/5132.
  9. Hadadian Y., Azimbagirad M., Navas E. A.; Pavan, T. Z. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions. Rev. Sci. Instrum. 2019, 90, 074701.
  10. Bordelon, D. E.; Goldstein, R. C.; Nemkov, V. S.; Kumar, A.; Jackowski, J. K.; DeWeese, T. L.; Ivkov, R. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications. IEEE Trans. Magn. 2011, 48, рр. 47–52.
  11. Ya. P. Theoretical modelling of temperature changes during induction heating of magnetite suspensions / Ya. P., I. M. Lishchynskyy. T. R. Tatarchuk // Physics and Chemistry of Solid State. 2022. Vol. 23, No. 3 (2022), pp. 536–541.
  12. Paulsen K.,’Strohbehn J,  Hill S.,., Lynch,D.. and . Kennedy F, Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional, axi-asymmetric, inhomogeneous patient model. I rodiation oncolology, biol. Phys., 1984, Vol. 10, pp. 1095–1107.
  13. Самченко Р. Стадник Б. Забезпечення рівномірності нагріву та точного вимірювання температури наночастинок магнітних матеріалів при проєктуванні устав для їх дослідження. Вимірювальна техніка та метрологія, № 74, 2013, C. 19–24.
  14. Sezer N., Ari I, Bice Y., Koç M. (2021). Superparamagnetic Nanoarchitectures: Multimodal Functionalities and Applications. Journal of Magnetism and Magnetic Materials, 538. 168300. 10.1016/j.jmmm.2021.168300.
  15. Lerch I. A., Pizzarello D. J. The physics and biology of tumorspecific particle-induction hyperthermia. Med Phys 1986;13:786.
  16. Luderer A., Borrelli N. F., Panzarino J. N., Mansfield G. R., Hess  D. M., Brown J. L., Barnett E. H. Glas-ceramic-mediated, magneticfield induced localized hyperthermia: Response of a murine mammary carcinoma. Radiat Res 1983; 94:190–198.
  17. Prashant B. Kharat, Sandeep B. Somvanshi, Pankaj P. Khirade, and K. M. Jadhav. Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe2O4 for Magnetic Fluid Hyperthermia toward Noninvasive Cancer Treatment. - ACS Omega 2020 5 (36), 23378–23384. DOI: 10.1021/acsomega.0c03332 // ttps://dx.doi.org/10.1021/acsomega.0c03332.
  18. Jordan A., Scholz R., Maier-Hauff K., et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials. 2001; 225(1): 118–126.
  19. Jian L., Shi Y., Liang J., et al. A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment. Applied Superconductivity, IEEE Transactions on. 2013; 23(3): 4400104-4400104.
  20. Gresits, I.; Thuróczy G., Sági, O., Gyüre-Garami B., Márkus B.G., Simon F. Non-calorimetric determination of absorbed power during magnetic nanoparticle based hyperthermia. Sci. Rep. 2018, 8, рр. 1–9.
  21. Cano M. E., Barrera A., Estrada J. C., et al. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements. Review of Scientific Instruments. 2011; 82(11): 114904.
  22. Kelemen, Andras & Kutasi, Nimród (2007). Induction-heating voltage inverter with hybrid LLC resonant load, the DQ model. Pollack Periodica, 2(1),  pp. 27–37. DOI:10.1556/Pollack.2.2007.1.3.
  23. Kumar A. ,Raman R., Kumar S.. Dynamic Behavior Improvement Of Induction Heating  Converters Using Fuzzy Logic Controller // Rev. Roum. Sci. Techn. 2019. Vol. 64, 2, pp. 163–168, Bucarest, 2019
  24. Morgan, Sean & Sohn, Hweerin & Victora, R. (2011). Use of trapezoidal waves and complementary static fields incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment. Journal of Applied Physics, 109 (7). 07B305-07B305. DOI 10.1063/1.3556939.
  25. Gabriele Barrera, Paolo Alliaa and Paola Tiberto. Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms. Nanoscale Adv., 2020, 2, 4652–4664. DOI: 10.1039/d0na00358a.
  26. M. Zeinoun et al., “Enhancing magnetic hype rthermia nanoparticle heating efficiency with non-sinusoidal alternating magnetic field waveforms” /Zeinoun, M.; Domingo Diez, J.; Rodriguez-Garcia, M.; Garcia, O.; Vasic, M.; Ramos, M.; Serrano Olmedo, J. J.  // Nanomaterials 2021, 11(12), 3240. https://doi.org/10.3390/nano11123240 //  https://www.mdpi.com/2079-4991/11/12/3240.
  27. Kuwahata, Akihiro & Adachi, Yuui & Yabukami, Shin. (2023). Ultra-short pulse magnetic fields on effective magnetic hyperthermia for cancer therapy // AIP Advances 13, 025145 (2023). DOI: 10.1063/9.0000558 // https://www.researchgate.net/publication/368405380_Ultra-short_pulse_magnetic_fields_on_effective_magnetic_hyperthermia_for_cancer_therapy.
  28. Iszály, Z.; Márián, I.G.; Szabó, I.A.; Trombettoni, A.; Nándori, I. Theory of superlocalized magnetic nanoparticle hyperthermia: Rotating versus oscillating fields. J. Magn. Magn. Mater. 2022, 541, 168528.