Механічні та трибологічні властивості полімерів і композитів на їх основі

2020;
: сс. 514 - 520
1
Department of Materials Science and Engineering, University of North Texas
2
Faculty of Chemistry, Wrocław University of Science and Technology
3
Department of Civil Engineering, College of Engineering, Bartin University
4
V.A. Belyі Institute of Mechanics of Polymer-Metal Systems of the Academy of Sciences of Belarus
5
Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas
6
Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas

За допомогою рівняння сформульовано визначення жорсткості полімерів та композитів на їх основі (PBC). Розглянуті трибологічні властивості полімерів та PBC, включаючи тертя (статичне, ковзання та кочення) та зношування. Описані взаємозв'язки між в'язкопружними властивостями і крихкості при випробуваннях на стійкість до подряпин та зв‘язки крихкості з ударною в‘язкістю за методами Шарпі та Ізода. Показано, що гнучкість пов'язана з динамічним тертям, а лінійне теплове розширення пов’язане з крихкістю. Проаналізовано обладнання, необхідне для визначення різноманітних властивостей.

  1.  https://en.wikipedia.org/wiki/Universal_testing_machine [access: 10-05-2020] (CC BY-NC 4.0)
  2. Brostow W., Hagg Lobland H.E: Materials: Introduction and Applications, John Wiley & Sons 2017.
  3. ASTM D638-14 Standard Test Method for Tensile Properties of Plastics.
  4. ISO 527-1:2019(en) Plastics - Determination of tensile properties.
  5. ASTM D785-08 Standard Test Method for Rockwell Hardness of Plastics and Electrical Insulating Materials.
  6. ASTM E18-20: Standard Test Methods for Rockwell Hardness of Metallic Materials.
  7. ASTM D2583-13a: Standard Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor.
  8. Thomson W. (Lord Kelvin): Math. Phys. Papers, 1890, 3, 437.
  9. Stembalski M, Preś P., Skoczyński W.: Arch. Civil Mech. Eng., 2013, 13, 444. https://doi.org/10.1016/j.acme.2013.04.010
  10. Rabinowicz E.: Friction and Wear of Materials, 2nd Edn., John Wiley & Sons 1995.
  11. Di Puccio F., Mattei L.: World J. Orthop., 2015, 6, 77. https://doi.org/10.5312/wjo.v6.i1.77
  12. Brostow W., Kumar P., Vrsaljko D., Whitworth J.: J. Nanosci. Nanotech. 2011, 11, 3922. https://doi.org/10.1166/jnn.2011.3849
  13. Myshkin N., Petrokovets M., Chizhik S.: Tribology: a Bridge from Macro to Nano [in:] Bhushan B. (Ed.), Micro/Nanotribology and its Applications, Kluwer Academic Publ., Amsterdam 1996, 385-390. https://doi.org/10.1007/978-94-011-5646-2_30
  14. Myshkin N., Petrokovets M., Kovalev A.: Tribol. Int., 2005, 38, 910. https://doi.org/10.1016/j.triboint.2005.07.016
  15. Myshkin N., Grigoriev A. et al.: Tribology in Industry, 2011, 33, 43.
  16. Myshkin N., Grigoriev A.: Tribology in Industry, 2013, 35, 97.
  17. Myshkin N.K. and Goryacheva I.G.: J. Frict. Wear, 2016, 37, 513. https://doi.org/10.3103/S106836661606009X
  18. Grigoriev A., Kavaliova I., Padgurskas J., Kreivaitis R.: International Scientific Conference BALTTRIB 2015. https://doi.org/10.15544/balttrib.2015.02
  19. Jost P. (Ed.): Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Need, HMSO, London 1966.
  20. Stachowiak G.: Friction, 2017, 5, 233. https://doi.org/10.1007/s40544-017-0173-7
  21. Holmberg K., Erdemir A.: Friction, 2017, 5, 263. https://doi.org/10.1007/s40544-017-0183-5
  22. Brostow W., Hagg Lobland H.E., Narkis M.: J. Mater. Res., 2006, 21, 2422. https://doi.org/10.1557/jmr.2006.0300
  23. Brostow W., Hagg Lobland H.E.: Chem. Chem. Technol., 2016, 10, 595. https://doi.org/10.23939/chcht10.04si.595
  24. Brostow W., Hagg Lobland H.E., Hong H. et al.: J. Mater. Sci. Res., 2019, 8, 31. https://doi.org/10.5539/jmsr.v8n3p31
  25. Pauling L.: The Chemical Bond and the Structure of Molecules and Crystals, 3rd edn., Cornell University Press, Ithaca, NY 1960.
  26. Brostow W., Osmanson A.: Mater. Lett. X, 2019, 1, 100005. https://doi.org/10.1016/j.mlblux.2019.100005
  27. Brostow W., Hagg Lobland H.E.: J. Mater. Sci., 2010, 45, 242. https://doi.org/10.1007/s10853-009-3926-5
  28. Brostow W., Zhang D.: Mater. Lett., 2020, 276, 128179. https://doi.org/10.1016/j.matlet.2020.128179