Синтез та приготування екологічним і простим методом гідрофобної меламіно-формальдегідної піни, покритої внт для ефективного розділення нафта/вода

2020;
: сс. 531 - 537
1
The University of Danang, University of Science and Technology
2
The University of Danang, University of Science and Technology
3
The University of Danang, University of Science and Technology

Представлено екологічний, простий і економічно ефективний метод заміни гідрофільної меламіноформальдегідної (MФ) піни на MФ-піну з покриттям гідрофобними вуглецевими нанотрубками (ВНТ) за допомогою процесу занурення. MФ-піну одержано з MФ-смоли, синтезованої в лабораторії реакцією конденсації між меламіном та формальдегідом за лужних умов з мольним співвідношенням меламіну до формальдегіду 1:3. Встановлено, що МФ-піна має структуру з відкритими порами із середнім діаметром 350 мкм, щільністю 25 кг•м-3 та пористістю 98 %. Визначено, що МФ-піна з покриттям ВНТ має високу сорбційну здатність (23-66 г/г) для нафт та органічних розчинників, можливість утилізації та високу селективність.

  1. [Kujawinski, E. B.;, Kido Soule, M. C.;, Valentine, D. et al.: L.; Boysen, A. K.; Longnecker, K.; Redmond, M. C. Fate of Dispersants Associated with the Deepwater Horizon Oil Spill. Environ. Sci. Technol., 2011, 45 (4), 1298–1306. https://doi.org/10.1021/es103838p.
  2. Broje, V.;, Keller, A.: A. Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environ. Sci. Technol., 2006, 40 (24), 7914–7918. https://doi.org/10.1021/es061842m.
  3. Zahed, M. A.;, Aziz, H. A.;, Isa, M. et al.: H.; Mohajeri, L.; Mohajeri, S. Optimal Conditions for Bioremediation of Oily Seawater. Bioresour. Technol., 2010, 101, (24), 9455–9460. https://doi.org/10.1016/j.biortech.2010.07.077.
  4. Adebajo, M. O.;, Frost, R. L.;, Kloprogge, J. et al.: T.; Carmody, O.; Kokot, S. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater., 2003, 10 (3), 159–170. https://doi.org/10.1023/A:1027484117065.
  5. Khin, M. M.;, Nair, A. S.;, Babu, V. et al.: J.; Murugan, R.; Ramakrishna, S. A Review on Nanomaterials for Environmental Remediation. Energy. Environ. Sci., 2012, 5 (8), 8075–8109. https://doi.org/10.1039/C2EE21818F.
  6. Singh, V.;, Kendall, R. J.;, Hake, K.;, Ramkumar, S.: Crude Oil Sorption by Raw Cotton. Ind. Eng. Chem. Res., 2013, 52 (18), 6277–6281. https://doi.org/10.1021/ie4005942.
  7. Angelova, D.;, Uzunov, I.;, Uzunova, S. et al.:; Gigova, A.; Minchev, L. Kinetics of Oil and Oil Products Adsorption by Carbonized Rice Husks. Chem. Eng. J., 2011, 172 (1), 306–311. https://doi.org/10.1016/j.cej.2011.05.114.
  8. Duong, H. T. T.;, Burford, R.: P. Effect of Foam Density, Oil Viscosity, and Temperature on Oil Sorption Behavior of Polyurethane. J. Appl. Polym. Sci., 2006, 99 (1), 360–367. https://doi.org/10.1002/app.22426.
  9. Ratcha, A.;, Samart, C.;, Yoosuk, B. et al.:; Sawada, H.; Reubroycharoen, P.; Kongparakul, S. Polyisoprene Modified Poly(Alkyl Acrylate) Foam as Oil Sorbent Material. J. Appl. Polym. Sci., 2015, 132 (42), n/a-n/a42688. https://doi.org/10.1002/app.42688.
  10. Hu, Y.;, Liu, X.;, Zou, J. et al.:; Gu, T.; Chai, W.; Li, H. Graphite/Isobutylene-Isoprene Rubber Highly Porous Cryogels as New Sorbents for Oil Spills and Organic Liquids. ACS Appl. Mater. Inter.faces, 2013, 5 (16), 7737–7742. https://doi.org/10.1021/am303294m.
  11. Geim, A. K.;, Novoselov, K.: S. The Rise of Graphene. Nat. Mater., 2007, 6 (3), 183–191. https://doi.org/10.1038/nmat1849.
  12. Sun, Y.,; Wu, Q.;, Shi, G.: Graphene Based New Energy Materials. Energy. Environ. Sci., 2011, 4 (4), 1113–1132. https://doi.org/10.1039/C0EE00683A.
  13. Gui, X.;, Wei, J.;, Wang, K. et al.:; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon Nanotube Sponges. Adv. Mater. Deerfield Beach Fla., 2010, 22 (5), 617–621. https://doi.org/10.1002/adma.200902986.
  14. Bi, H.;, Xie, X.;, Yin, K. et al.:; Zhou, Y.; Wan, S.; He, L.; Xu, F.; Banhart, F.; Sun, L.; Ruoff, R. S. Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents. Adv. Funct. Mater., 2012, 22 (21), 4421–4425. https://doi.org/10.1002/adfm.201200888.
  15. Yang, Y.;, Tong, Z.;, Ngai, T.;, Wang, C.: Nitrogen-Rich and Fire-Resistant Carbon Aerogels for the Removal of Oil Contaminants from Water. ACS Appl. Mater. Interface.,s 2014, 6 (9), 6351–6360. https://doi.org/10.1021/am5016342.
  16. Luo, Y.;, Jiang, S.;, Xiao, Q. et al.:; Chen, C.; Li, B. Highly Reusable and Superhydrophobic Spongy Graphene Aerogels for Efficient Oil/Water Separation. Sci. Rep., 2017, 7 (1), 7162. https://doi.org/10.1038/s41598-017-07583-0.
  17. Zhu, H.;, Chen, D.;, Li, N. et al.:; Xu, Q.; Li, H.; He, J.; Lu, J. Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Adv. Funct. Mater., 2015, 25 (4), 597–605. https://doi.org/10.1002/adfm.201403864.
  18. Dai, Z.;, Weng, C.;, Liu, L. et al.: ; Hou, Y.; Zhao, X.; Kuang, J.; Shi, J.; Wei, Y.; Lou, J.; Zhang, Z. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio. Sci. Rep., 2016, 6. https://doi.org/10.1038/srep32989.
  19. Liu, T.,; Zhao, G.;, Zhang, W. et al.:; Chi, H.; Hou, C.; Sun, Y. The Preparation of Superhydrophobic Graphene/Melamine Composite Sponge Applied in Treatment of Oil Pollution. J. Porous Mater., 2015, 22 (6), 1573–1580. https://doi.org/10.1007/s10934-015-0040-8.
  20. Merline, D. J.;, Vukusic, S.;, Abdala, A.: A. Melamine Formaldehyde: Curing Studies and Reaction Mechanism. Polym. J., 2013, 45 (4), 413–419. https://doi.org/10.1038/pj.2012.162.
  21. Ullah, S.;, Bustam, M. A.;, Nadeem, M. et al.:; Naz, M. Y.; Tan, W. L.; Shariff, A. M. Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins https://www.hindawi.com/journals/tswj/2014/940502/ (accessed Dec 12, 2017) Sci. World J., 2014, 2014. https://doi.org/10.1155/2014/940502.
  22. Mijatovic, J.;, Binder, W. H.;, Kubel, F.;, Kantner, W.: Studies on the Stability of MF Resin Solutions: Investigations on Network Formation. Macromol. Symp., 2002, 181 (1), 373–382. https://doi.org/10.1002/1521-3900(200205)181:1<373::AID-MASY373>3.0.CO;2-J.
  23. Kandelbauer, A.;, Wuzella, G.;, Mahendran, A. et al.:; Taudes, I.; Widsten, P. Model-Free Kinetic Analysis of Melamine–Formaldehyde Resin Cure. Chem. Eng. J., 2009, 152 (2), 556–565. https://doi.org/10.1016/j.cej.2009.05.027.
  24. Wang, D.;, Zhang, X.iaoxian;, Luo, S.,; Li, S.: Preparation and Property Analysis of Melamine Formaldehyde Foam. Adv. Mater. Phys. Chem., 2012, 02 (04), 63–67. https://doi.org/10.4236/ampc.2012.24B018.
  25. Manley, T. R.;, Higgs, D. A.: Thermal Stability of Melamine Formal-Dehyde Resins. J. Polym. Sci. Polym. Symp., 1973, 42 (3), 1377–1382. https://doi.org/10.1002/polc.5070420337.
  26. Devallencourt, C.;, Saiter, J. M.;, Fafet, A.;, Ubrich, E.: Thermogravimetry/Fourier Transform Infrared Coupling Investigations to Study the Thermal Stability of Melamine Formaldehyde Resin. Thermochim. Acta, 1995, 259 (1), 143–151. https://doi.org/10.1016/0040-6031(95)02262-Z.
  27. Edwards, E. R.;, Antunes, E. F.;, Botelho, E. et al.: C.; Baldan, M. R.; Corat, E. J. Evaluation of Residual Iron in Carbon Nanotubes Purified by Acid Treatments. Appl. Surf. Sci., 2011, 258 (2), 641–648. https://doi.org/10.1016/j.apsusc.2011.07.032.
  28. Abdala, A. A.;, Merline, D. J.;, Vukusic, S.: Melamine Formaldehyde: Curing Studies and Reaction Mechanism. Polym. J., 2012, 45 (4), 413. https://doi.org/10.1038/pj.2012.162.
  29. Nemanič, V.;, Zajec, B.;, Žumer, M. et al.:; Figar, N.; Kavšek, M.; Mihelič, I. Synthesis and Characterization of Melamine–Formaldehyde Rigid Foams for Vacuum Thermal Insulation. Appl. Energy., 2014, 114, 320–326. https://doi.org/10.1016/j.apenergy.2013.09.071.
  30. Wang, C.-F.;, Lin, S.-J.: Robust Superhydrophobic/Superoleophilic Sponge for Effective Continuous Absorption and Expulsion of Oil Pollutants from Water. ACS Appl. Mater. Interface., s2013, 5 (18), 8861–8864. https://doi.org/10.1021/am403266v.
  31. Gui, X.;, Zeng, Z.;, Lin, Z. et al.:; Gan, Q.; Xiang, R.; Zhu, Y.; Cao, A.; Tang, Z. Magnetic and Highly Recyclable Macroporous Carbon Nanotubes for Spilled Oil Sorption and Separation. ACS Appl. Mater. Interface.s, 2013, 5 (12), 5845–5850. https://doi.org/10.1021/am4015007.