Суперкислотний ZrO2–SiO2–SnO2 змішаний оксид: синтез та дослідження

2021;
: cc. 336–342
1
Institute of Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv, Ukraine
2
Institute of Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv, Ukraine
3
Technical Center of the NAS of Ukraine, Kyiv, Ukraine
4
Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Kyiv, Ukraine
5
Institute of Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv, Ukraine

Суперкислотні потрійні ZrO2 SiO2 SnO2 оксиди (Н0 = –14.52) синтезовано золь-гель методом з атомним співвідношенням в межах: 20 ≤ Zr4+ ≤ 29, 60 ≤ Si4+ ≤ 67, 11 ≤ Sn4+ ≤ 20 %. Суперкислотність ZrO2 SiO2 SnO2 оксиду пояснена формуванням координаційно-ненасичених Zr4+ йонів, як сильних центрів Льюїса

  1. Patrylak L., Krylova M., Pertko O. et al.: Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234
  2. Arata K.: Adv. Catal., 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
  3. Arata K., Matsuhashi H., Hino M., Nakamura H.: Catal. Today, 2003, 81, 17. https://doi.org/10.1016/S0920-5861(03)00098-1
  4. Zazhigalov V., Strelko V., Khalamejda S. et al.: Proceedings of the DGMK-Conference "C4/C5-Hydrocarbons: Routes to Higher Value-Added Products", 2004, 209.
  5. Jiang J., Yaghi O.: Chem. Rev., 2015, 115, 6966. https://doi.org/10.1021/acs.chemrev.5b00221
  6. Jiang J., Gandara F., Zhang Y. et al.: J. Am. Chem. Soc., 2014, 136, 12844. https://doi.org/10.1021/ja507119n
  7. Sun Q., Hu K., Leng K. et al.: J. Mater. Chem. A, 2018, 6, 18712. https://doi.org/10.1039/C8TA06516K
  8. Prudius S., Melezhyk O., Brei V.: Stud. Surf. Sci. Catal., 2010, 175, 233. https://doi.org/10.1016/S0167-2991(10)75031-X
  9. Inshina O., Korduban A., Tel'biz G., Brei V.: Adsorpt. Sci. Technol., 2017, 35, 439. https://doi.org/10.1177/0263617417694887
  10. Bosman H., Kruissink E., Vanderspoel J., Vandenbrink F.: J. Catal., 1994, 148, 660. https://doi.org/10.1006/jcat.1994.1253
  11. Tanabe K.: Solid Acid and Bases. Their Catalytic Properties. Academic Press, New-York-London 1970.
  12. Tanabe K., Misono M., Hattori H., Ono Y: New Solid Acids and Bases - Their Catalytic Properties, 1st edn. Elsevier Science, Amsterdam 1989, 124.
  13. Barton D., Shtein M., Wilson R. et al.: J. Phys. Chem. B, 1999, 103, 630. https://doi.org/10.1021/jp983555d
  14. Rajagopal S., Nataraj D., Khyzhun O. et al.: Cryst. Eng. Comm., 2011, 13, 2358. https://doi.org/10.1039/C0CE00303D
  15. Khalameida S., Samsonenko M., Sydorchuk V. et al.: Theor. Exp. Chem., 2017, 53, 40. https://doi.org/10.1007/s11237-017-9499-5
  16. Manjunathan P., Marakatti V., Chandra P. et al.: Catal. Today, 2018, 309, 61. https://doi.org/10.1016/j.cattod.2017.10.009
  17. Bhagwat M., Shah P., Ramaswamy V.: Mater. Lett., 2003, 57, 1604. https://doi.org/10.1016/S0167-577X(02)01040-6
  18. Corma A., Nemeth L., Renz M., Valencia S.: Nature, 2001, 412, 423. https://doi.org/10.1038/35086546
  19. Moulder J., Stickle W., Sobol P., Bomben K.: Handbook of X-ray Photoelectron Spectroscopy, 1st edn. Perkin-Elmer Corporation Physical Electronics Division, USA 1992.
  20. Guittet M., Crocombette J., Gautier-Soyer M.: Phys. Rev. B, 2001, 63, 125117. https://doi.org/10.1103/PhysRevB.63.125117
  21. Botella P., Corma A., Lopez-Nieto J. et al.: J. Catal., 2000, 195, 161. https://doi.org/10.1006/jcat.2000.2971