Антибіокорозивні гібридні матеріали підвищеної міцності

2021;
: cc. 500–511
1
Department of Medical Chemistry, Faculty of Pharmacy, Tbilisi Medical University, Institute of Inorganic-Organic Hybrid Compounds and Nontraditional Materials, Faculty of Exact and Natural Sciences, Ivane Javahishvili University, Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas
2
Department of Materials Science and Engineering, University of North Texas
3
Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas
4
Department of Medical Chemistry, Faculty of Pharmacy, Tbilisi Medical University
5
Department of Medical Chemistry, Faculty of Pharmacy, Tbilisi Medical University
6
College of Mechanics and Robotics, AGH University of Science and Technology
7
Institute of Inorganic-Organic Hybrid Compounds and Nontraditional Materials, Faculty of Exact and Natural Sciences, Ivane Javahishvili University

Одержанінові антикорозійні багатофункціональні гібридні матеріали на основі функційних перфторалкілметакрилатних кополімерів з епоксидними групами в основних ланцюгах та окремих біологічно активних сполук. Визначено, що гібриди є прозорими, демонструють непогану адгезію до різних поверхонь (пластик, дерево), високу в'язкоеластичну рекуперацію при випробуванні на подряпини, низькі показники зносу та температуру склуванняпонад323 К. За допомогою скануючої електронної мікрографії встановлено, що поділу фаз не відбувається. Підвищена механічна міцність і непогана стійкість до стирання є перевагами для використання синтезованих захисних та антикорозійних покриттів у різних сферах застосування, включаючи охорону культурної спадщини.

  1. Sambhy V., MacBride M., Peterson B., Sen A.: J. Am. Chem. Soc., 2006, 128,9798.https://doi.org/10.1021/ja061442z
  2. Preserving our Heritage, Improving our Environment, European Commission, DG Research, Information and Communication Unit, Brussels2009.
  3. Gomez-RomeroP., SanchezC.: Functional Hybrid Materials, Wiley-VCH, Weinheim 2006.
  4. ChujoY., KONA Powder Part. J., 2007, 25, 255.https://doi.org/10.14356/kona.2007023
  5. Zvonkina I., Soucek M.:Curr. Opin. Chem. Eng., 2016, 11, 123.https://doi.org/10.1016/j.coche.2016.01.008
  6. KenawyE., Worley S., BroughtonR.Biomacromolecules, 2007,8,1359.https://doi.org/10.1021/bm061150q
  7. Mammadova N., Abbasov V., Mammadkhanova S., Ahmadbayova S.Proc. Petrochem. Oil Ref. 2018, 19, 180.
  8. SavelyevYu.: Polyurethane Thermoplastic Elastomers Comprising Hydrazine Derivatives: Chemical Aspects [in:] FakirovS. (Ed.), Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH, Weinheim 2005, 355-380. https://doi.org/10.1002/3527606610.ch13
  9. VitaleA., BongiovanniR., Ameduri B.:Chem. Rev.,2015,115, 8835.https://doi.org/10.1021/acs.chemrev.5b00120
  10. TengH.:Appl. Sci.,2012, 2, 496.https://doi.org/10.3390/app2020496
  11. Kostov G., Ameduri B., Boutevin B.: J. Fluor. Chem., 2002,114, 171.https://doi.org/10.1016/S0022-1139(02)00023-4
  12. Lekishvili N., Lachinov M., Zaikov G.:Fluorine-containing Polymers for Materials with the Complete Internal Light-reflection (Review) [in:] Pethrick R, Zaikov G. (Eds.) Polymer Yearbook. Rapra technology 2003,209-250.
  13. ErolI., ArslanturkB., Gurler Z.:Polym.Sci. B, 2015, 3, 228.https://doi.org/10.1134/S1560090415030045
  14. Smith Jr. D., Iacono S., Boday D., Kettwick S.(Eds.):Advances in Fluorine-Containing Polymers.ACS Symposium Series Vol. 1106, 2013.
  15. Mukbaniani O., Brostow W., Aneli J. et al.: Mater. Technol., 2020, 54, 33.https://doi.org/10.17222/mit.2019.091
  16. YaoW., Li Y., HuangX.:Polymer, 2014, 55, 6197.https://doi.org/10.1016/j.polymer.2014.09.036
  17. LekishviliN., NadareishviliL., Zaikov G., Khananashvili L.: Polymers and Polymeric Materials for Fiber and Gradient Optics. VSP (International Science Publi¬shers), Utrecht-Boston-Köln-Tokyo 2002.
  18. BarbakadzeKh., BrostowW., DatashviliT.et al.:Wear, 2018, 394-395, 228.https://doi.org/10.1016/j.wear.2017.08.006
  19. BarbakadzeKh., BrostowW., HnatchukN.et al.:Mater. Res. Innovat., 2015,19, 227.https://doi.org/10.1179/1433075X14Y.0000000256
  20. Lachinov M., Guliashvili T., Lekishvili N., Khananashvili L.: Polym. Sci. A, 1998, 40, 88.
  21. LekishviliN.,BarbakadzeKh., ZurabishviliD.et al.:Oxid. Commun., 2010, 33, 104.
  22. Sadym A., Lagunin A., Filimonov D., Poroikov V.: Chem. Pharm. J., 2002, 36, 21.https://doi.org/10.1023/A:1022402425883
  23. Menard K.P.: Ch. 6 [in:] Brostow W.(Ed.), Performance of Plastics. Hanser, Munich -Cincinnati 2000.
  24. Khedkar J., Negulescu I., Meletis E.: Wear,2002, 252, 361.https://doi.org/10.1016/S0043-1648(01)00859-6
  25. Brostow W., Hagg Lobland H.: Materials: Introduction and Applications, John Wiley & Sons, 2017.
  26. Kalogeras I.,HaggLobland H.:J. Mater. Educ., 2012, 34, 69.
  27. BrostowW., Hagg Lobland H., Narkis M.: J. Mater. Res., 2006, 21, 2422.https://doi.org/10.1557/jmr.2006.0300
  28. BrostowW., KumarP., Vrsaljko D., Whitworth J.: J. Nanosci. Nanotech., 2011, 11, 3922.https://doi.org/10.1166/jnn.2011.3849
  29. TravinskaiaT., MishukE., PerepelitisinaL.,SavyelyevYu.: Polimernyi Zh., 2010, 32, 66.
  30. BardellaF., Montes RodriguesA., Leal Neto R., Crystalwalk: J. Mater. Educ., 2019, 41, 157.
  31. Zhang Y.: J. Mater. Educ., 2019, 41, 51.
  32. KrzywickaM., GrudzinskiJ., CzarnackaK.: J. Mater. Educ., 2020, 42, 245.
  33. ÇomezN., GülC., DurmusH., Sadrettin ZeybecM.: J. Mater. Educ., 2020, 42, 235.
  34. Fedotov A., Drozdov N., Mazanik A. et al.: J. Mater. Educ., 2007, 29, 35.
  35. MiddeaA., MonteM., Lucas E.: Chem. Chem. Technol., 2008, 2, 91. https://doi.org/10.23939/chcht02.02.091
  36. Garretto M., GonzalezG., RamosA., Lucas E.: Chem. Chem. Technol., 2010, 4, 317.https://doi.org/10.23939/chcht04.04.317
  37. SpinelliL., Lucas E.: J. Mater. Educ., 2017, 39, 125.
  38. Vianna E., Figuiredo V., Middea A. et al.: J. Mater. Educ., 2019, 41, 41.
  39. Guerrero-Martin C., Montes-Paéz E., Lucas E.: J. Mater. Educ.,2019, 41, 189.
  40. Gedde U., Hedenqvist M.: Fundamental Polymer Science, 2nd edn. Springer Nature, Switzerland 2019. https://doi.org/10.1007/978-3-030-29794-7
  41. Grebowicz J., LauS.-F., Wunderlich B.:J. Polym. Sci., 1984, 71, 19. https://doi.org/10.1002/polc.5070710106
  42. TaczałaJ., Sawicki J., Pietrasik J.: Materials, 2020, 13, 3807.https://doi.org/10.3390/ma13173807
  43. BilyeuB., Brostow W., Menard K.P.:J. Mater. Educ., 1999, 21, 281.
  44. BilyeuB., Brostow W., Menard K.P.: J. Mater. Educ., 2000, 22, 107.
  45. BilyeuB., Brostow W., Menard K.P.: J. Mater. Educ., 2001, 23, 189
  46. BilyeuB., Brostow W., Menard K.P.:Polym. Compos., 2002, 23, 1111. https://doi.org/10.1002/pc.10505
  47. IatsyshynO., AstakhovaO., Shyshchak O.et al.:Chem. Chem. Technol., 2013, 7, 73.https://doi.org/10.23939/chcht07.01.073
  48. BratychakM., AstakhovaO., ShyshchakO. et al., Chem. Chem. Technol., 2019, 13, 360.https://doi.org/10.23939/chcht13.03.360
  49. BratychakM., AstakhovaO., ShyshchakO.et al.: Chem. Chem. Technol.,2020, 14, 343.https://doi.org/10.23939/chcht14.03.343
  50. BratychakM., AstakhovaO., Shyshchak O.: Chem. Chem. Technol., 2020, 14, 504.https://doi.org/10.23939/chcht14.04.504