Ефективність інгібітування корозії, експериментальні та квантові хімічні дослідження нейтрального червоного для вуглецевої сталі у перхлорних кислих середовищах

2022;
: cc. 440 - 447
1
Superior School of Applied Sciences; Laboratory ToxicoMed, University of Abou Bekr Belkaïd
2
Laboratory of ToxicoMed, University of Abou Bekr Belkaid
3
P.O. Box 165 RP, Tlemcen, 13000, Algeria; B.P. 119, Tlemcen, 13000, Algeria
4
Laboratory of ToxicoMed, University of Abou Bekr Belkaid

Як інгібітор корозії вуглецевої сталі (С-сталь) досліджено барвник нейтральний червоний (НЧ) в 1М хлорній кислоті за допомогою методу втрати маси та теоретичних розрахунків, заснованих на теорії функціоналу густини (DFT). Визначено, що нейтральний червоний є ефективним інгібітором, і його ефективність інгібування за температури 293 К зростає до 89,50 % із збільшенням концентрації до 5•10-3 М. Для процесів розчинення і адсорбції розраховано такі термодинамічні параметри, як ентальпія, ентропія та вільна енергія Гіббса. Встановлено, що пригнічення корозії відбувається внаслідок спонтанної фізико-хімічної адсорбції молекул інгібіторів на поверхні С-сталі. За допомогою розрахованих квантових хімічних параметрів показана можливість існування зв’язку між ефективністю інгібітора та його електронними властивостями.

[1] Attar, T.; Benchadli, A.; Choukchou-Braham, E. Corrosion Inhibition of Carbon Steel in Perchloric Acid by Potassium Iodide. Inter. J. Adv. Chem. 2019, 7, 35-41. https://doi.org/10.14419/ijac.v7i1.19651
[2] Attar, T.; Larabi, L.; Harek, Y. The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid. Adv. Chem. 2014, 2014. https://doi.org/10.1155/2014/827514
[3] Özkır, D. The Electrochemical Variation of a Kind of Protein Staining and Food Dye as a New Corrosion Inhibitor on Mild Steel in Acidic Medium. Int. J. Electrochem. 2019, 2019. https://doi.org/10.1155/2019/5743952
[4] Mallikarjuna, N.M.; Keshavayya, J.; Prasanna, B.M.; Praveen, B.M.; Tandon, H.C. Synthesis, Characterization, and Anti-corrosion Behavior of Novel Mono Azo Dyes Derived from 4,5,6,7-Tetrahydro-1,3-benzothiazole for Mild Steel in Acid Solution. J. Bio. Tribo. Corros. 2020, 6, 9. https://doi.org/10.1007/s40735-019-0306-9
[5] Benhachem, F.Z.; Attar, T.; Bouabdallah, F.: Kinetic Study of Adsorption Methylene Blue Dye from Aqueous Solutions Using Activated Carbon. Chem. Rev. Lett. 2019, 2, 33-39. https://doi.org/10.22034/CRL.2019.87964
[6] Hassaan, M.A.; El Nemr, A. Health and Environmental Impacts of Dyes: Mini Review. Am. J. Environ. Sci. 2017, 1, 64-67. https://doi.org/10.11648/j.ajese.20170103.11
[7] Benhachem, F-Z.; Attar, T. Comparison Studies for the Removal of a Basic Dye from Aqueous Solution Using Coffee Residues and Waste Tea. J. Adv. Chem. 2019, 7, 97-103. https://doi.org/10.14419/ijac.v7i1.29596
[8] Xhanari, K.; Finšgar, M.; Knez Hrnčič, M.; Maver, U.; Knez, Ž.; Seiti, B. Green Corrosion Inhibitors for Aluminium and its Alloys: A Review. RSC Adv. 2017, 7, 27299-27330. https://doi.org/10.1039/C7R A03944A
[9] Ko, X.; Sharma, S. Adsorption and Self-Assembly of Surfactants on Metal-Water Interfaces. J. Phys. Chem. B. 2017, 121, 10364-10370. https://doi.org/10.1021/acs.jpcb.7b09297
[10] Tang, L.; Mu, G.; Liu, G. The Effect of Neutral Red on the Corrosion Inhibition of Cold Rolled Steel in 1.0 M Hydrochloric Acid. Corros. Sci. 2003, 45, 2251-2262. https://doi.org/10.1016/S0010-938X(03)00046-5
[11] Eduok, U.; Inam, E.; Umoren, S.A.; Akpan, I.A. Chemical and Spectrophotometric Studies of Naphthol Dye as an Inhibitor for Aluminium Alloy Corrosion in Binary Alkaline Medium. Geosystem. Eng. 2013, 16, 146-155. https://doi.org/10.1080/12269328.2013.803708
[12] El-Haddad, M.N.; Fouda, A.S.; Mostafa, H.A. Corrosion Inhibition of Carbon Steel by New Thiophene Azo Dye Derivatives in Acidic Solution. J. Mater. Eng. Perform. 2013, 22, 2277-2287. https://doi.org/10.1007/s11665-013-0508-0
[13] Valle-Quitana, J.C.; Dominguez-Patiño, G.F.; Gonzalez-Rodriguez, J.G. Corrosion Inhibition of Carbon Steel in 0.5 M H2SO4 by Phtalocyanine Blue. ISRN Corrosion 2014, 2014. https://doi.org/10.1155/2014/945645
[14] Zaferani, S.H.; Shishesaz, M.R. Corrosion Inhibition of Carbon Steel in Acidic Solution by Alizarin Yellow GG (AYGG). J. Pet. Environ. Biotechnol. 2014, 5, 1. https://doi.org/10.4172/2157-7463.1000188
[15] Abd El-Raouf, M.; El-Azabawy, O.E.; El-Azabawy, R.E. Investigation of Adsorption and Inhibitive Effect of Acid Red GRE (183) Dye on the Corrosion of Carbon Steel in Hydrochloric Acid Media. Egypt. J. Pet. 2015, 24, 233-239. https://doi.org/10.1016/j.ejpe.2015.07.006
[16] Peme, T.; Olasunkanmi, L.O.; Bahadur, I.; Adekunle A.S.; Kabanda, M.M.; Ebenso, E. Adsorption and Corrosion Inhibition Studies of Some Selected Dyes as Corrosion Inhibitors for Mild Steel in Acidic Medium: Gravimetric, Electrochemical, Quantum Chemical Studies and Synergistic Effect with Iodide Ions. Molecules 2015, 20, 16004-16029. https://doi.org/10.3390/molecules200916004
[17] Al-Moubaraki, A.H. Corrosion Protection of Mild Steel in Acid Solutions Using Red Cabbage Dye. Chem. Eng. Commun. 2015, 202, 1069. https://doi.org/10.1080/00986445.2014.907565
[18] El Boraei, N.F.; Halim, S.A.; Ibrahim, M.A.M. Effective Corrosion Inhibition of Mild Steel in Acidic Medium Using Inexpensive Kermes Natural Dye: Experimental and Quantum Chemical Study. Anti-Corros. Method. Mater. 2018, 65, 626-636. https://doi.org/10.1108/ACMM-04-2018-1927
[19] El Sayed, M.Y.; Abdel-Gaber, A.M.; Rahal, H.T. Safranin-A Potential Corrosion Inhibitor for Mild Steel in Acidic Media: A Combined Experimental and Theoretical Approach. J. Fail. Anal. Prev. 2019, 19, 1174-1180. https://doi.org/10.1007/s11668-019-00719-6
[20] Attar, T.; Benchadli, A.; Messaoudi, B.; Benhadria, N.; Choukchou-Braham, E. Experimental and Theoretical Studies of Eosin Y Dye as Corrosion Inhibitors for Carbon Steel in Perchloric Acid Solution. Bull. Chem. React. Eng. Catal. 2020, 15, 454-464. https://doi.org/10.9767/bcrec.15.2.7753.454-464
[21] Attar, T.; Larabi, L.; Harek, Y. Inhibition Effect of Potassium Iodide on the Corrosion of Carbon Steel (XC 38) in Acidic Medium. Inter. J. Adv. Chem. 2014, 2, 139-142. https://doi.org/10.14419/ijac.v2i2.3272
[22] Chygyrynets', E.; Vorobyova, V. A Study of Rape-Cake Extract as Eco-Friendly Vapor Phase Corrosion Inhibitor. Chem. Chem. Technol. 2014, 8, 235-242. https://doi.org/10.23939/chcht08.02.235
[23] Yuan, S.; Liang, B.; Zhao, Y.; Pehkonen, S.O. Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater Containing Inorganic Sulphide and Sulphate-Reducing Bacteria. Corros. Sci. 2013, 74, 353-366. https://doi.org/10.1016/j.corsci.2013.04.058
[24] Eddy, N.O.; Ita, B.I. QSAR, DFT and Quantum Chemical Studies on the Inhibition Potentials of Some Carbozones for the Corrosion of Mild Steel in HCl. J. Mol. Model. 2011, 17, 359-376. https://doi.org/10.1007/s00894-010-0731-7
[25] Benhadria, N.; Attar, T.; Messaoudi, B. Understanding the Link Between the Detection Limit and the Energy Stability of Two Quercetin-Antimony Complexes by Means of Conceptual DFT. S. Afr. J. Chem. 2020,73, 120-124. https://doi.org/10.17159/0379-4350/2020/v73a17
[26] Attar, T.; Messaoudi, B.; Benhadria, N. DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chem. Chem. Technol. 2020, 14, 20-25. https://doi.org/10.23939/chcht14.01.020
[27] Guo, L.; Safi, Z.S.; Kaya, S.; Shi, W.; Tüzün. B.; Altunay, N.; Kaya, C. Anticorrosive Effects of Some Thiophene Derivatives Against the Corrosion of Iron: A Computational Study. Front. Chem. 2018, 6, 155. https://doi.org/10.3389/fchem.2018.00155
[28] Musa, A.Y.; Kadhum, A.A.H.; Mohamed, A.B.; Takriff, M.S. Molecular Dynamics and Quantum Chemical Calculation Studies on 4,4-Dimethyl-3-thiosemicarbazide as Corrosion Inhibitor in 2.5 M H2SO4. Mater. Chem. Phys. 2011, 129, 660-665. https://doi.org/10.1016/j.matchemphys.2011.05.010
[29] Alaoui, K.; El Kacimi, Y.; Galai, M.; Serrar, H.; Touir, R.; Kaya, S.; Kaya, C.; Ebn Touhami, M. New Triazepine Carboxylate Derivatives: Correlation between Corrosion Inhibition Property and Chemical Structure. Int. J. Ind. Chem. 2020, 11, 23-42. https://doi.org/10.1007/s40090-019-00199-5
[30] Chakravarthy, M.P.; Mohana, K.N.; Pradeep Kumar, C.B. Corrosion Inhibition Effect and Adsorption Behaviour of Nicotinamide Derivatives on Mild Steel in Hydrochloric Acid Solution. Int. J. Ind. Chem. 2014, 5, 1. https://doi.org/10.1007/s40090-014-0019-3
[31] Benchadli, A.; Attar, T.; Choukchou-Braham, E. Inhibition of Carbon Steel Corrosion in Perchloric Acid Solution by Povidone Iodine. Phys. Chem. Res. 2019, 7, 837-848. https://doi.org/10.22036/pcr.2019.198787.1665
[32] Oguzie, E.E. Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel. Mater. Chem. Phys. 2006, 99, 441-446. https://doi.org/10.1016/j.matchemphys.2005.11.018
[33] Eddy, N.O.; Odoemelam, S.A.; Odiongenyi, A.O. Inhibitive, Adsorption and Synergistic Studies on Ethanol Extract of Gnetum Africana as Green Corrosion Inhibitor for Mild Steel in H2SO4. Green. Chem. Lett. Rev. 2009, 2, 111-119. https://doi.org/10.1080/17518250903170868
[34] Fawzy, A.; Abdallah, M.; Zaafarany, I.A.; Ahmed, S.A.; Althagafi, I.I. Thermodynamic, Kinetic and Mechanistic Approach to the Corrosion Inhibition of Carbon Steel by New Synthesized Amino Acids-Based Surfactants as Green Inhibitors in Neutral and Alkaline Aqueous Media. J. Mol. Liq. 2018, 265, 276-291. https://doi.org/10.1016/j.molliq.2018.05.140
[35] Anyiam, C.K.; Ogbobe, O.; Oguzie, E.E.; Madufor, I.C.; Nwanonenyi, S.C.; Onuegbu, G.C.; Obasi, H.C.; Chidiebere, M.A. Corrosion Inhibition of Galvanized Steel in Hydrochloric Acid Medium by a Physically Modified Starch. SN Appl. Sci. 2020, 2, 520. https://doi.org/10.1007/s42452-020-2322-2
[36] Shahidi, M.; Golestani, Gh.; Gholamhosseinzadeh, M.R. Mentha Spicata L. Extract as a Green Corrosion Inhibitor for Carbon Steel in HCl Solution. Phys. Chem. Res. 2017, 5, 293-307. https://doi.org/10.22036/pcr.2017.41160
[37] Laarej, K.; Bouachrine, M.; Radi, S.; Kertit, S.; Hammouti, B. Quantum Chemical Studies on the Inhibiting Effect of Bipyrazoles on Steel Corrosion in HCl. E- J. Chem. 2010, 7, 419. https://doi.org/10.1155/2010/273206
[38] Lukovits, I.; Kálmán, E.; Zucchi, F. Corrosion Inhibitors-Correlation between Electronic Structure and Efficiency. Corrosion 2001, 57, 3-8. https://doi.org/10.5006/1.3290328
[39] Bedair, M.A. The Effect of Structure Parameters on the Corrosion Inhibition Effect of Some Heterocyclic Nitrogen Organic Compounds. J. Mol. Liq. 2016, 219, 128-141. https://doi.org/10.1016/j.molliq.2016.03.012