Одержання дистиляційних бітумів з високов’язких нафт українського родовища

2022;
: cc. 461 - 468
1
Lviv Polytechnic National University
2
Національний університет «Львівська політехніка»
3
Lviv Polytechnic National University
4
State Higher Educational Institution "Ukrainian State University of Chemical Technology"
5
Lviv Polytechnic National University

Визначено характеристики вихідних нафт та суміші нафт Яблунівського родовища Полтавської області України, для вибору подальших шляхів переробки. Встановлено, що нафти є важкими з високим вмістом сірки, не містять світлих дистилятів, мають високу густину та в’язкість. В статті розглядається можливість одержання дорожніх бітумів з високов’язкої нафти. В результаті розгонки суміші нафт одержано дистиляційний бітум, який відповідає вимогам на бітум дорожній 100/150. Щоб покращити довговічність та стійкість до старіння даного бітуму до нього вводили полімерний модифікатор. Дослідження показали, що додавання модифікатора в кількості 3 % є доцільним та підвищує експлуатаційні характеристики бітуму до марки БМВ 60/90.

[1] Europe Modified Bitumen Market - Growth, Trends, Covid-19 Impact, and Forecasts (2022 - 2027). Mordor Intelligence. https://www.mordorintelligence.com/industry-reports/europe-modified-bitu... (accessed Jan 12, 2022).
[2] France Tops Eurobitume's European Bitumen Consumption Table. Asphalt Paving, Compaction & Testing. http://ropl-wh-live.sgcdev.io/wh3/news/france-tops-eurobitumes-european-... (accessed Oct 19, 2021).
[3] Asphalt Manufacturing Industry in the US - Market Research Report https://www.ibisworld.com/united-states/market-research-reports/asphalt-... (accessed Jan 12, 2022).
[4] Bitumen Market Size, Share and Industry Analysis Report by Product (Paving, Oxidized, Cutback, Emulsion, Polymer Modified), By Application (Roadways, Waterproofing, Adhesives, Insulation), Regional Outlook, Application Potential, Competitive Market Share & Forecast, 2021 - 2027. Report ID: GMI1100, 2020 https://www.gminsights.com/industry-analysis/bitumen-market (accessed Oct 19, 2021).
[5] Pan, Y.; Han, D.; Yang, T.; Tang, D.; Huang, Y.; Tang, N.; Zhao, Y. Field Observations and Laboratory Evaluations of Asphalt Pavement Maintenance Using Hot In-Place Recycling. Constr. Build. Mater. 2021, 271, 121864. https://doi.org/10.1016/j.conbuildmat.2020.121864
[6] Residual Asphalt Production. GlobeCore. https://emulsion.globecore.com/residual-asphalt-production (accessed Oct 21, 2021)
[7] The Bitumen Industry. - A Global Perspective. Production, Chemistry, Use, Specifi Cation and Occupational Exposure. 3rd edn. [Online] Asphalt Institute Inc. and European Bitumen Association-Eurobitume: USA, 2015.
[8] Babatunde, O.; Boichenko, S.; Topilnytskyy, P.; Romanchuk, V. Comparing Physico-Chemical Properties of Oil Fields of Nigeria and Ukraine. Chem. Chem. Technol. 2017, 11 (2), 220-225. https://doi.org/10.23939/chcht11.02.220
[9] Riva, J.P.; Atwater, G.I. World Distribution of Heavy Oils and Tar Sands. [Online] Britannica. https://www.britannica.com/science/heavy-oil/Tar-sands (accessed Jan 12, 2022).
[10] Speight, J.G. Heavy Oil Production Processes. Elsevier Inc. 2013. https://doi.org/10.1016/C2012-0-00598-4
[11] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14 (3), 412-419. https://doi.org/10.23939/chcht14.03.220 https://doi.org/10.23939/chcht14.03.412
[12] Strong Growth: Bitumen Market Reached 190 Thousand Tons. https://aet.in.ua/en/news/uverennyj-rost-rynok-bituma-v-avguste-dostig-1... (accessed Oct 12, 2021)
[13] Behnood, A.; Gharehveran, M.M. Morphology, Rheology and Physical Properties of Polymer-Modified Asphalt Binders. Eur. Polym. J. 2019, 112, 766-791. https://doi.org/10.1016/j.eurpolymj.2018.10.049
[14] Remisova, E. Improvement in Properties of Bitumen Using Selected Additives. Fifth International Conference on Road and Rail Infrastructure. 17-19 May 2018, Zadar, Croatia. https://doi.org/10.5592/CO/CETRA.2018.737
[15] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
[16] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15 (4), 608-620. https://doi.org/10.23939/chcht15.04.608
[17] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues.4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2021, 16 (1), 142-149. https://doi.org/10.23939/chcht16.01.142
[18] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical modification of road oil bitumens by formaldehyde. Pet. Coal. 2020, 62 (1), 420-429.
[19] Kemalov,A.F.; Kemalov, R.A.; Abdrafikova, I.M.; Fakhretdinov, P.S.; Valiev, D.Z. Polyfunctional Modifiers for Bitumen and Bituminous Materials with High Performance. Adv. Mater. Sci. Eng. 2018, 2018, Article ID 7913527. https://doi.org/10.1155/2018/7913527
[20] Asphalt Production and Oil Refining. Pavement Interactive. https://pavementinteractive.org/reference-desk/materials/asphalt/asphalt... (accessed Oct 19, 2021).
[21] Holý, M.; Remišová, E. Analysis of Influence of Bitumen Composition on the Properties Represented by Empirical and Viscosity Test. Transp. Res. Proc. 2019, 40, 34-41. https://doi.org/10.1016/j.trpro.2019.07.007
[22] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22 (12), 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
[23] Gunka V.; Demchuk Yu.; Pyshyev S.; Starovoit A.; Lypko Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60 (6), 1199-1206.
[24] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. EcoComfort. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_1
[25] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12 (4), 456-461. https://doi.org/10.23939/chcht12.04.456
[26] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of mathematical model and identification of optimal conditions to obtain phenol-cresol-formaldehyde resin. Chem. Chem. Technol. 2019, 13 (2), 212-217. https://doi.org/10.23939/chcht13.02.212
[27] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15 (3), 443-449. https://doi.org/10.23939/chcht15.03.443
[28] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15 (5), 1774. https://doi.org/10.3390/ma15051774
[29] Topilnytskyy, P.I.; Romanchuk, V.V.; Yarmola, T.V.; Zinchenko, D.V. Physico-Chemical Properties of High-Sulfuric Heavy Oils from Yablunivske Deposit. Chemistry, Technology and Application of Substances. 2020, 3 (1), 75-82. https://doi.org/10.23939/ctas2020.01.075
[30] ASTM D1298-12b. Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method.
[31] EN ISO 3104. Petroleum products - Transparent and opaque liquids - Determination of kinematic viscosity and calculation of dynamic viscosity.
[32] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13 (4), 503-509. https://doi.org/10.23939/chcht13.04.503
[33] ASTM D95-13. Standard Test Method for Water in Petroleum Products and Bituminous Materials by Distillation.
[34] ASTM D4294. Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy-Dispersive X-Ray Fluorescence Spectrometry.
[35] ASTM D3230. Standard Test Method for Salts in Crude Oil (Electrometric Method).
[36] ASTM D974. Standard Test Method for Acid and Base Number by Color-Indicator Titration.
[37] ASTM D97. Standard Test Method for Pour Point of Petroleum Products.
[38] ASTM D2887. Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography
[39] ASTM D5307. Standard Test Method for Determination of Boiling Range Distribution of Crude Petroleum by Gas Chromatography.
[40] ASTM D6352. Standard Test Method for Boiling Range Distribution of Petroleum Distillates in Boiling Range from 174 to 700°C by Gas Chromatography.
[41] ASTM D938. Standard Test Method for Congealing Point of Petroleum Waxes, Including Petrolatum.
[42] ASTM D1321. Standard Test Method for Needle Penetration of Petroleum Waxes.
[43] EN 1426. Bitumen and bituminous binders - Determination of needle penetration.
[44] EN 1427. Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method.
[45] DSTU 8825:2019. Bitumen and bituminous binders. Determination of the ductility (National Standards of Ukraine).
[46] EN 12593. Bitumen and bituminous binders - Determination of the Fraass breaking point.
[47] Petroleum and related products. Determination of flash and fire points. Cleveland open cup method.
[48] EN 12607-1. Bitumen and bituminous binders - Determination of the resistance to hardening under influence of heat and air - Part 1: RTFOT method.
[49] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15 (3),423-431.https://doi.org/10.23939/chcht15.03.423
[50] Topilnytskyy, P.; Romanchuk, V.; Boichenko, S.; Golych, Y. Physico-Chemical Properties and Efficiency of Demulsifiers Based on Block Copolymers of ethylene and Propylene Oxides. Chem. Chem. Technol. 2014, 8(2),211-218.https://doi.org/10.23939/chcht08.02.211
[51] EN 12591. Bitumen and bituminous binders - Specifications for paving grade bitumens.
[52] Standard of the Organization of Ukraine. http://online.budstandart.com/ru/catalog/doc-page.html?id_doc=84291
[53] Hrynyshyn, O.B.; Fryder, I.V. Metody oderzhannya naftovykh bitumiv na osnovi zalyshkiv pererobky parafinystykh naft. Vopr. Khimii i Khimicheskoi Tekhnologii 2013, 3, 109-111.
[54] Kataware Aniket, V.; Singh, D. Effects of Wax-Based, Chemical-Based, and Water-Based Warm-Mix Additives on Mechanical Performance of Asphalt Binders. J. Mater. Civ. Eng. 2018, 30, 04018237. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002441
[55] Synthetic wax. The Versatile Additive for Asphalt Mixes. https://www.synthetic wax.com/ (accessed on May 11, 2019).
[56] Edwards, Y.; Isacsson, U. Wax in Bitumen (Part II-Characterization and Effects). Road Mater. Pavement Des. 2005, 6, 439-468. https://doi.org/10.1080/14680629.2005.9690015
[57] SOU 42.1-37641918-068:2017. Bitumy dorozhni viazki, modyfikovani dobavkamy na osnovi voskiv. Tekhnichni umovy (National Standards of Ukraine).