Каталітичний синтез метилгліколату з метанольного розчину гліоксалю на оснóвних каталізаторах

2022;
: pp. 515 - 520
1
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine
2
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine
3
Institute for Sorption and Problems of Endoecology of the National Academy of Sciences of Ukraine

Досліджено процес одержання метилгліколату з метанольного розчину гліоксалю на твердих оснóвних каталізаторах на основі змішаних оксидів алюмінію, цирконію та магнію. Cелективність утворення метилгліколату зростає зі збільшенням основності каталізатора. Найбільш селективний співосаджений MgO-ZrO2 каталізатор забезпечує практично 100 % вихід метилгліколату. На MgO-ZrO2/Al2O3 спостерігається 95%-й вихід метилгліколату з утворенням гліоксальдиметилацеталю як побічного продукту. Метилгліколат з високим виходом 93 % можна отримувати в проточному режимі, що може представляти практичний інтерес.

[1] Xu, Y.; Meh, A.; Yang, G.; Zhao, Y.; Chen, Q.; Li, Z.; Ma, X. Homogeneous Catalytic Kinetics of Methyl Glycolate Hydrolysis. Chem. Eng. Technol. 2016, 39 (5), 918-926. https://doi.org/10.1002/ceat.201500649
[2] Cotellessa, C.; Peris, K.; Chimenti, S. Glycolic Acid and Its Use in Dermatology. J. Eur. Acad. Dermatol. Venereol. 1995, 5 (3), 215-217. https://doi.org/10.1111/j.1468-3083.1995.tb00107.x
[3] Tang, Sh.-Ch.; Yang, J.-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018, 23 (4), 863. https://doi.org/10.3390/molecules23040863
[4] De Clercq, R.; Makshina, E.; Sels, B.F.; Dusselier, M. Catalytic Gas-Phase Cyclization of Glycolate Esters: A Novel Route Toward Glycolide-Based Bioplastics. ChemCatChem 2018, 10 (24), 5649-5655. https://doi.org/10.1002/cctc.201801469
[5] Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32 (8-9), 762-798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
[6] Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an Industrial Production Technology for High-Molecular-Weight Polyglycolic Acid. Polym. J. 2014, 46, 769-775. https://doi.org/10.1038/pj.2014.69
[7] Ginjupalli, K.; Shavi, G.V.; Averineni, R.K.; Bhat, M.; Udupa, N.; Nagaraja Upadhya, P. Poly(α-hydroxy acid) Based Polymers: A Review on Material and Degradation Aspects. Polym. Degrad. Stab. 2017, 144, 520-535. https://doi.org/10.1016/j.polymdegradstab.2017.08.024
[8] Gädda, T.M.; Pirttimaa, M.M.; Koivistoinen, O.M.; Richard, P.; Penttilä, M.; Harlin, A. The Industrial Potential of Bio-Based Glycolic Acid and Polyglycolic Acid. Appita J. 2014, 67, 12. https://www.researchgate.net/publication/286496676
[9] Jem, K.J.; Tan, B. The Development and Challenges of Poly (lactic acid) and Poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3 (2), 60-70. https://doi.org/10.1016/j.aiepr.2020.01.002
[10] Yang, Sh.-B.; Chien, I.-L. Rigorous Design and Optimization of Methyl Glycolate Production Process through Reactive Distillation Combined with a Middle Dividing-Wall Column. Ind. Eng. Chem. Res. 2019, 58 (13), 5215-5227. https://doi.org/10.1021/acs.iecr.8b05665
[11] Sun, Y.; Wang, H.; Shen, J.; Liu, H.; Liu, Z. Highly Effective Synthesis of Methyl Glycolate with Heteropolyacids as Catalysts. Catal. Commun. 2009, 10 (5), 678-681. https://doi.org/10.1016/j.catcom.2008.11.015
[12] Wang, B.; Xu, Q.; Song, H.; Xu, G. Synthesis of Methyl Glycolate by Hydrogenation of Dimethyl Oxalate over Cu-Ag/SiO2 Catalyst. J. Nat. Gas Chem. 2007, 16 (1), 78-80. https://doi.org/10.1016/S1003-9953(07)60030-9
[13] Yin, A.; Wen, C.; Dai, W.-L.; Fan, K. Ag/MCM-41 as a Highly Efficient Mesostructured Catalyst for the Chemoselective Synthesis of Methyl Glycolate and Ethylene Glycol. Appl. Catal. B 2011, 108-109, 90-99. https://doi.org/10.1016/j.apcatb.2011.08.013
[14] Ye, R.-P.; Lin, L.; Wang, L.-C.; Ding, D.; Zhou, Z.; Pan, P.; Xu, Z.; Liu, J.; Adidharma, H.; Radosz, M. Perspectives on the Active Sites and Catalyst Design for the Hydrogenation of Dimethyl Oxalate. ACS Catal. 2020, 10 (8), 4465-4490. https://doi.org/10.1021/acscatal.9b05477
[15] Hayashi, T.; Inagaki, T.; Itayama, N.; Baba, H. Selective Oxidation of Alcohol over Supported Gold Catalysts: Methyl Glycolate Formation from Ethylene Glycol and Methanol. Catal. Today 2006, 117 (1-3), 210-213. https://doi.org/10.1016/j.cattod.2006.06.045
[16] Ke, Y.-H.; Qin, X.-X.; Liu, C.-L.; Yang, R.-Z.; Dong, W.-S. Oxidative Esterification of Ethylene Glycol in Methanol to Form Methyl Glycolate over Supported Au Catalysts. Catal. Sci. Technol. 2014, 4, 3141-3150. https://doi.org/10.1039/C4CY00556B
[17] Mattioda, G., Blanc, A. Glyoxal. In Ullmann’s encyclopedia of industrial chemistry; Vol 17; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2012; pp 83-87.
[18] Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main Routes for the Thermo-Conversion of Biomass into Fuels and Chemicals. Part 1: Pyrolysis Systems. Energy Convers. Manag. 2009, 50 (12), 3147-3157. https://doi.org/10.1016/j.enconman.2009.08.014
[19] Kiyoura, T.; Kogure, Y. Synthesis of Hydroxyacetic Acid and its Esters from Glyoxal Catalyzed by Multivalent Metal Ions. Appl. Catal. A-Gen. 1997, 156 (1), 97-104. https://doi.org/10.1016/S0926-860X(96)00414-0
[20] Dapsens, P.Y.; Mondelli, C.; Kusema, B.T., Verel, R.; Pérez-Ramírez, J. A Continuous Process for Glyoxal Valorisation Using Tailored Lewis-Acid Zeolite Catalysts. Green Chem. 2014, 16, 1176-1186. https://doi.org/10.1039/C3GC42353K
[21] Levytska, S.; Mylin, A. Catalytic Synthesis of Glycolic Acid and its Methyl Ester from Glyoxal. Ukr. Chem. J. 2020, 86 (12), 134-145. https://doi.org/10.33609/2708-129X.86.12.2020.134-145
[22] Tanabe, K. Solid Acid and Bases. Their Catalytic Properties; Academic Press: New York–London, 1970.
[23] Nenitescu, C.D. Organicheskaya khimiya; vol. I; Inostr. Lit.: Moskow, 1963.