Піроліз пластикових відходів з перетворенням у паливо для використання в двигунах внутрішнього згоряння

2023;
: cc. 438 - 449
1
Department of Chemical Engineering, Birla Institute of Technology
2
Department of Chemistry, Birla Institute of Technology, Department of Chemistry, Sai Nath University
3
Department of Chemical Engineering, Birla Institute of Technology,Department of Chemical Engineering, Pravara Rural Engineering College
4
Department of Chemical Engineering, Birla Institute of Technology
5
Department of Chemical Engineering, Birla Institute of Technology

У цьому дослідженні різні пластикові відходи різноманітних типів пластмас, таких як поліетилен низької густини та поліпропілен, були піддані піролізу в трубчастому реакторі періодичної дії з каталізатором оксидом цинку. Пластикові відходи були охарактеризовані за допомогою ТГА та ДТГ аналізу, а також ІЧ-спектроскопії. Продукти піролізу аналізували стандартними методами для визначення різних параметрів.

  1. Budsaereechai, S.; Hunt, A.J.; Ngernyen, Y. Catalytic Pyrolysis of Plastic Waste for the Production of Liquid Fuels for Engines. RSC Adv. 2019, 9, 5844-5857. https://doi.org/10.1039/C8RA10058F
  2. Kasar, P.; Sharma, D.K.; Ahmaruzzaman, M. Thermal and Catalytic Decomposition of Waste Plastics and its co-Processing with Petroleum Residue through Pyrolysis Process. J. Clean. Prod. 2020, 265, 121639. https://doi.org/10.1016/j.jclepro.2020.121639
  3. Levytska, O.; Dolzhenkova, O.; Sichevyi, O.; Dorhanova, L. Masonry Unit Manufacturing Technology Using Polymeric Binder. Chem. Chem. Technol. 2020, 14, 88-92. https://doi.org/10.23939/chcht14.01.088
  4. Roberts, G. Dawei, X. Hydrogenation of Polymers in the Pres-ence of Non-Reactive Processing Aid. US 60423804, 2003.
  5. Xu, D.; Carbonell, R.G.; Roberts, G.W.; Kiserow, D.J. Phase Equilibrium for the Hydrogenation of Polystyrene in CO2 Swollen Solvents. J. Supercrit. Fluids 2005, 34, 1-9. https://doi.org/10.1016/j.supflu.2004.09.004
  6. Almeida, D.; Marques M.D. Niobium Oxide as Catalyst for the Pyrolysis of Polypropylene and Polyethylene Plastic Waste. Chem. Chem. Technol. 2016, 10, 465-672. https://doi.org/10.23939/chcht10.04.465
  7. Kremer, I.; Tomić, T.; Katančić, Z.; Hrnjak-Murgić, Z.; Erceg, M.; Schneider, D.R. Catalytic Decomposition and Kinetic Study of Mixed Plastic Waste. Clean Technol. Environ. Policy 2021, 23, 811-827. https://doi.org/10.1007/s10098-020-01930-y
  8. Shah, J; Rasul, M.J.; Mabood, F. Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons via Base Catalysts. Iran. J. Chem. Chem. Eng. 2008, 27, 103-109.
  9. Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Conver-sion of Low Density Polyethylene (LDPE) over ZSM-5 Zeolite to Liquid Fuel. Fuel 2017, 192, 71-82. https://doi.org/10.1016/j.fuel.2016.12.008
  10. Papari, S.; Bamdad, H.; Berruti, F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials 2021, 14, 2586. https:// doi.org/10.3390/ma14102586
  11. Thahir, R.; Ali Altway, A.; Juliastuti, S.R.; Susianto. Produc-tion of Liquid Fuel from Plastic Waste Using Integrated Pyrolysis Method with Refinery Distillation Bubble Cap Plate Column. Ener-gy Rep. 2019, 5, 70-77. https://doi.org/10.1016/j.egyr.2018.11.004
  12. Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308-326. https://doi.org/10.1016/j.enconman.2016.02.037
  13. Ramesha, D.; Kumara, G.P.; Mohammed, A.V.T.; Mohammad, H.A.; Kasma, M.A. An Experimental study on Usage of Plastic Oil and B20 Algae Biodiesel Blend as Substitute Fuel to Diesel Engine. Environ. Sci. Pollut. Res. 2016, 23, 9432-9439. https://doi.org/10.1007/s11356-015-5981-6
  14. Ananthakumar, S.; Jayabal, S.; Thirumal, P. Investigation on Performance, Emission, and Combustion Characteristics of Variable Compression Engine Fuelled with Diesel, Waste Plastics Oil Blends. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 19-28. https://doi.org/10.1007/s40430-016-0518-6
  15. Kumar, S.; Prakash, R.; Murugan, S.; Singh, R.K. Performance, and Emission Analysis of Blends of Waste Plastic Oil Obtained by Catalytic Pyrolysis of Waste HDPE with Diesel in a CI Engine. Energy Convers. Manag. 2013, 74, 323-331. https://doi.org/10.1016/j.enconman.2013.05.028
  16. Khan, M.Z.H.; Sultana, M.; Al-Mamun, M.R. and Hasan, M.R. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. J. Environ. Public Health 2016, 2016, 7869080. https://doi.org/10.1155/2016/7869080
  17. Owusu, P.A.; Banadda, N.; Zziwa, A.; Seay, J.; Kiggundu, N. Reverse Engineering of Plastic Waste into Useful Fuel Products. J. Anal. Appl. Pyrolysis 2018, 130, 285-293. https://doi.org/10.1016/j.jaap.2017.12.020
  18. Diaz-Silvarrey, L.S.; Phan, A.N. Kinetic Study of Municipal Plastic Waste. Int. J. Hydrog. Energy 2016, 41, 16352-16364. https://doi.org/10.1016/j.ijhydene.2016.05.202
  19. Wang, Q.; Wang, G.; Zhang, J.; Lee, J.-Y.; Wang, H.; Wang, C. Combustion Behaviors and Kinetics Analysis of Coal, Biomass, and Plastic. Thermochim. Acta 2018, 669, 140-148. https://doi.org/10.1016/j.tca.2018.09.016
  20. Burra, K.G.; Gupta, A.K. Kinetics of Synergistic Effects in co-Pyrolysis of Biomass with Plastic Wastes. Appl. Energy 2018, 220, 408-418. https://doi.org/10.1016/j.apenergy.2018.03.117
  21. Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M., Tariq, R., Gul, K.; Ahmad, W. Pyrolysis Study of Polypropylene and Polyethylene Into Premium Oil Products. Int. J. Green Energy 2015, 12, 663-671. https://doi.org/10.1080/15435075.2014.880146
  22. Syamsiro, M.; Saptoadi, H.; Norsujianto, T.; Noviasri, P.; Cheng, S.; Alimuddin, Z.; Yoshikawa, K. Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors. Energy Procedia 2014, 47, 180-188. https://doi.org/10.1016/j.egypro.2014.01.212
  23. Garfoth, A.A.; Lin, Y.H.; Sharratt, P.N.; Dwyer, J. Production of Hydrocarbons by Catalytic Degradation of High Density Polye-thylene in a Laboratory Fluidised-Bed Reactor. Appl. Catal. A-Gen. 1998, 169, 331-342. https://doi.org/10.1016/S0926-860X(98)00022-2
  24. Lin, Y.-H.; Yen, H.-Y. Fluidised Bed Pyrolysis of Polypropy-lene over Cracking Catalysts for Producing Hydrocarbons. Polym. Degrad. Stab. 2005, 89, 101-108. https://doi.org/10.1016/j.polymdegradstab.2005.01.006
  25. Mani, M.; Subash, C.; Nagarajan, G. Performance, Emission and Combustion Characteristics of a DI Diesel Engine Using Waste Plastic Oil. Appl. Therm. Eng. 2009, 29, 2738-2744. https://doi.org/10.1016/j.applthermaleng.2009.01.007