За реакцією первинного ліганду (іміну бензидину) (H2L) та вторинного ліганду (1,10-фенантролін) (L`) з йонами металів Fe(II), Co(II), Ni(II) та Cu(II) у мольному співвідношенні 1:2:2 синтезовані бінуклеарні металічні комплекси. За допомогою елементарного аналізу, FT-IR, UV-VIS, магнітної сприйнятливості, молярної провідності, 1H ЯМР та термогравіметричного аналізу TGA-DTA визначено характеристику комплексів. Показано, що комплекси з Fe(II), Co(II) і Ni(II) мають восьмигранну геометрію, тоді як комплекс з Cu(II) має квадратну площинну геометрію. Всі синтезовані комплекси стійкі і можуть зберігатися місяцями без суттєвих змін. З використанням дифузійних агарових пластинок проведено оцінку антибактеріальної активності одержаних сполук стосовно двох видів бактерій, грампозитивної та грамнегативної (Kelbsiella та Proteus). Встановлено, що бактерія Klebsiella є більш чутливою до цих сполук, ніж Proteus. Показано, що синтезовані сполуки мають більший вплив на бактерії у порівнянні з антибіотиком (Амікацин).
- Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih N.; Salimon J.; Abdullah B. Metal Complexes of Schiff base: Preparation, Characterization and Antibacterial Activity. Arab. J. Chem. 2017, 10, 1639-1644. https://doi.org/10.1016/j.arabjc.2013.06.006
- Ejidike, I.; Ajibade, P. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent. Int. J. Mol. Sci. 2016, 17, 60. https://doi.org/10.3390/ijms17010060
- Murtaza, S.; Akhtar, M.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim S. Synthesis and Biological Evaluation of Schiff Bases of 4-Aminophenazone as an Anti-inflammatory, Analgesic and Antipyretic Agent. J. Saudi Chem. Soc. 2017, 21, 359-372. https://doi.org/10.1016/j.jscs.2014.04.003
- Divya, K.; Pinto, G.; Pinto, A. Application of Metal Complexes of Schiff Bases as an Antimicrobial Drug: A Review of Recent Works. Int. J. Curr. Pharm. Res. 2017, 9, 27-30. https://doi.org/10.22159/ijcpr.2017.v9i3.19966
- Anacona, J.; Mago, K.; Camus, J. Antibacterial Activity of Transition Metal Complexes with a Tridentate NNO Amoxicillin Derived Schiff Base. Synthesis and Characterization. Appl. Organomet. Chem. 2018, 32, 1. https://doi.org/10.1002/aoc.4374
- Barnabas, M.; Parambadath, S.; Nagappan, S.; Ha, C. Sulfamerazine Schiff-Base Complex Intercalated Layered Double Hydroxide: Synthesis, Characterization, and Antimicrobial Activity. Heliyon. 2019, 5, e01521. https://doi.org/10.1016/j.heliyon.2019.e01521
- Sunday Nworie, F. Bis(Salicylidene) Ethylenediamine(salen) and bis(Salicylidene) Ethylenediamine-Metal Complexes: from Structure to Biological Activity. J. Anal. Pharm. Res. 2016, 3, 1. https://doi.org/10.15406/japlr.2016.03.00076
- Akhter, S.; Zaman, H.; Mir, S. Dar, A.M. Synthesis of Schiff Base Metal Complexes: A Concise Review. Eur. Chem. Bull. 2017, 6, 475-483. https://doi.org/10.17628/ecb.2017.6.475-483
- Rao, N.; Mishra, D.; Maurya, R. Synthesis and Characterisation of Some Novel CIS-Dioxo-Molybdenum(VI) Complexes of Schiff Bases Derived from Salicylaldehyde. Synth. React. Inorg. Met. Chem. 1995, 25, 437-449. https://doi.org/10.1080/15533179508218232
- Felthouse, T.; Hendrickson, D. Magnetic Exchange Interactions in Binuclear Transition-Metal Complexes. 17. Benzidine and p-Phenylenediamine, Extended Aromatic Diamine Bridging Ligands in Binuclear Copper(II) 2,2',2''-triaminotriethylamine and Vanadyl Bis(hexafluoroacetylacetonate) Complexes. Inorg. Chem. 1978, 17, 2636-2648. https://doi.org/10.1021/ic50187a054
- El-Tabl, A. Synthesis and Physico-Chemical Studies on Cobalt(II), Nickel(II) and Copper(II) Complexes of Benzidine Diacetyloxime Transit. Met. Chem. 2002, 27, 166-170. https://doi.org/10.1023/A:1013952726823
- Zhao, P.; Zhai, S.; Dong, J.: Gao, L.; Liu X.; Wang L.; Kong J.; Li L. Synthesis, Structure, DNA Interaction, and SOD Activity of Three Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and 1,10-Phenanthroline. Bioinorg. Chem. Appl. 2018, 2018, 8478152. https://doi.org/10.1155/2018/8478152
- Patel, R. N.; Singh, N. G.; Gundla, V.L.N. Synthesis, Structure and Properties of Ternary Copper(II) Complexes of ONO Donor Schiff Base, Imidazole, 2,2′-Bipyridine and 1,10-Phenanthroline. Polyhedron 2006, 25, 3312-3318. https://doi.org/10.1016/j.poly.2006.06.017
- Kosolapov, D.; Kuschak, P.; Vainshtein, M.; Vatsourina, A.V.; Weiβner, A.; Kästner, M.; Müller, R.A. Microbial Processes of Heavy Metal Removal from Carbon-Deficient Effluents in Constructed Wetlands. Eng. Life Sci. 2004, 4, 403-411. https://doi.org/10.1002/elsc.200420048
- Selvamohan, T.; Sandhya, V. Studies on Bactericidal Activity of Different Soaps Against Bacterial Strains J. Microbiol. Biotechnol. Res. 2012, 2, 646-650.
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method: Am. J. Clin. Pathol. 1966, 45, 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
- More, G.; Raut, D.; Aruna, K.; Bootwala, S. Synthesis, Spectroscopic Characterization and Antimicrobial Activity Evaluation of New Tridentate Schiff Bases and their Co(II) Complexes. J. Saudi Chem. Soc. 2017, 21, 954-964. https://doi.org/10.1016/j.jscs.2017.05.002
- Singh, D.K.; Singh, N.; Singh, R. Transethmoidal Meningocele: an Unusual Complication of Intracranial Neoplasm. Int. J. Inorg. Chem. 2013, 2013, 1. https://doi.org/10.1136/bcr-2013-009200
- Krishnaveni, G.; Mubarak, M.S; Kiruthika, M.; Elayaperumal, R. Synthesis, Spectral Characterization, Electrochemical Behaviour, In vitro Antimicrobial and DPPH Radical Scavenging Activities of Iron (II), Cobalt (II) Complexes with Imidazolyl Terpyridine. Der Chem. Sin. [Online] 2017, 8. https://www.imedpub.com/articles/synthesis-spectral-characterization-ele... (accessed Oct 06, 2021).
- Larsen, C.; Wenger, O. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements. Chem A Eur J., 2018, 24, 2039-2058. https://doi.org/10.1002/chem.201703602
- San Tan, S.; Yanagisawa, S.; Inagaki, K.; Kassim, M.B.; Morikawa, Y. Experimental and Computational Studies on Ruthenium(ii) bis-Diimine Complexes of N,N′-chelate Ligands: the Origin of Changes in Absorption Spectra Upon Oxidation and Reduction. Phys. Chem. Chem. Phys. 2019, 21, 7973. https://doi.org/10.1039/C8CP05016C
- Goodgame, D.M.L.; Goodgame, M.; Cotton, F.A. Electronic Spectra of Some Tetrahedral Nickel(II) Complexes. J. Am. Chem. Soc., 1961, 83, 4161-4167. https://doi.org/10.1021/ja01481a014
- Lever, A. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier Pub. Co: Amsterdam, New York, 1968.
- Mihsen, H.H.; Shareef N.D. Synthesis, Characterization of Mixed-Ligand Complexes Containing 2,2-Bipyridine and 3-Aminopropyltriethoxysilane. J. Phys. Conf. Ser. 2018, 1032, 1. https://doi.org/10.1088/1742-6596/1032/1/012066
- Venanzi, L.M. Tetrahedral Complexes of Nickel (II) and the Factors Determining their Formation. J. Inorg. Nucl. Chem. 1958, 8(C), 137-142. https://doi.org/10.1016/0022-1902(58)80175-X
- Knittl, E.T.; Abou-Hussein, A.A.; Linert, W. Syntheses, Characterization, and Biological Activity of Novel Mono- and Binuclear Transition Metal Complexes with a Hydrazone Schiff Base Derived from a Coumarin Derivative and Oxalyldihydrazine. Monatshefte für Chemie-Chemical Mon. 2018, 149, 431-443. https://doi.org/10.1007/s00706-017-2075-9
- Mihsen, H.H.; Abass, S.K.; Abass, A.K.; Hussain, K.A.; Abbas, Z.F. Template Synthesis of Sn(II), Sn(IV) and Co(II) Complexes via 3-Aminopropyltriethoxysilane and Salicylaldehyde and Evaluate their Antibacterial Sensitivity. Asian J. Chem. 2018, 30, 2277-2280. https://doi.org/10.14233/ajchem.2018.21439
- Czakis-Sulikowska, D.; Malinowska, A.; Radwañska-Doczekalska, J. Synthesis, Properties and Thermal Decomposition of Bipyridine-Oxalato Complexes with Mn(II), Co(II), Ni(II) and Cu(II). Pol. J. Chem. 2000, 74, 607-614.
- Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533-3539. https://doi.org/10.1021/ja00905a001
- Sundaram, S.; Kanniappan, G.V.; Kannappan, P. Enzymatic and Non Enzymatic Antioxidant Activity of Tabernaemontana divaricate R.Br. against DEN and Fe-NTA Induced Renal Damage in Wistar Albino Rats. J. Appl. Pharm. Sci. 2015, 5, 33-37. https://doi.org/10.7324/JAPS.2015.50506