Нелінійне моделювання ізотерми адсорбції для міді зі стічних вод природним та модифікованим клиноптилолітом і глауконітом

2024;
: cc. 94 - 102
1
Department of Environmental Safety, Lviv State University of Life Safety
2
Department of Environmental Safety, Lviv State University of Life Safety

Представлено результати адсорбції іонів $Cu^{2+}$ на природному та термічно обробленому та НВЧ-опроміненому клиноптилоліті та глауконіті. Проведено експерименти з рентгенівської фотоелектронної спектроскопії зразків. Залежність між адсорбованою речовиною та рівноважною концентрацією в стічних водах описано чотирма двопараметричними та чотирма трипараметричними моделями ізотерм адсорбції.

  1. Barker, A. J.; Clausen, J. L.; Douglas, T. A.; Bednar, A. J.; Griggs, C. S.; Martin, W. A. Environmental Impact of Metals Resulting from Military Training Activities: A Review.Chemosphere 2021, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110
  2. Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health. 2023, 20, 3885. https://doi.org/10.3390/ijerph20053885
  3. Rathi, B. S.; Kumar, P. S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995
  4. Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
  5. Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon SorbentsBased on Natural Raw Materials. J. Water Land Dev. 2020, 47(X–XII), 160–168. https://doi.org/10.24425/jwld.2020.135043
  6. Amin, K. F.; Gulshan, F.; Asrafuzzaman, F. N. U.; Das, H., Rashid; R., Manjura Hoque, S. Synthesis of Mesoporous Silica and Chitosan-Coated Magnetite Nanoparticles for Heavy Metal Adsorption from Wastewater. Environ. Nanotechnol. Monit.Manag. 2023, 20, 100801.https://doi.org/10.1016/j.enmm.2023.100801
  7. Kostenko, E.; Melnyk, L.; Matko, S.; Malovanyy, M. The Use of Sulphophtalein Dyes Immobilized on Anionite AB-17X8 to Determine the Contents of Pb(II), Cu(II), Hg(II) and Zn(II) in Liquid Medium. Chem. Chem. Technol. 2017, 11, 117–124. https://doi.org/10.23939/chcht11.01.117
  8. Djebbar, M.; Djafri, F. Adsorption of Zinc Ions in Water on Natural and Treated Clay. Chem. Chem. Technol. 2018, 12, 272– 278. https://doi.org/10.23939/chcht12.02.272
  9. Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed- Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
  10.  Malovanyy, M., Sakalova, H. Vasylinycz, T., Palamarchuk, O., Semchuk, J. Treatment of Effluents from Ions of Heavy Metals as Display of Environmentally Responsible Activity of Modern Businessman. J. Ecol. Eng. 2019, 20, 167–176. http://dx.doi.org/10.12911/22998993/102841
  11. Petrushka, I.; Petrushka, K.; Bliatnyk, B. Improvement of Adsorption Processes of Wastewater Treatment from Nickel Ions. Environ. Probl. 2020, 5, 83–87. https://doi.org/10.23939/ep2020.02.083
  12. Kabuba, J.; Banza, M. Ion-Exchange Process for the Removal of Ni (II) and Co (II) from Wastewater Using Modified Clinoptilolite: Modeling by Response Surface Methodology and Artificial Neural Network. Results Eng. 2020, 8, 100189. https://doi.org/10.1016/j.rineng.2020.100189
  13. Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C. L.; Franscescon, F.; Freitas, L.; de Mello, J. M.; Fiori, M. A.; Oliveira, J. V.; Dal Magro, J. Adsorption of Heavy Metals from Wastewater Graphic Industry Using Clinoptilolite Zeolite as Adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008
  14. Spoljaric, N.; Crawford, W. A. Glauconitic Greensand: A Possible Filter of Heavy Metal Cations from Polluted Waters. Environ. Geol. 1978, 2, 215–221. https://doi.org/10.1007/BF02380487
  15. Spoljaric, N.; Crawford, W. A. Removal of Contaminants from Landfill Leachates by Filtration through Glauconitic Greensands. Environ. Geol. 1978, 2, 359–363. https://doi.org/10.1007/BF02380510
  16. Sysa, L. V.; Stepova, K. V.; Petrova, M. A.; Kontsur, A. Z. Microwave-Treated Bentonite for Removal of Lead from Wastewater. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 5, 126–134. https://doi.org/10.32434/0321-4095-2019-126-5-126-134
  17. Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6/6 (90), 26–32. https://doi.org/10.15587/1729-4061.2017.116090
  18. Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361– 1403. https://doi.org/10.1021/ja02242a004
  19. Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
  20. Hansen, J.B. Kinetics of Ammonia Synthesis and Decomposition on Heterogeneous Catalysts. In Ammonia. Nielsen, A., Ed; Springer: Berlin, Heidelberg, 1995; pp 149–190. https://doi.org/10.1007/978-3-642-79197-0_4
  21. Kiełbasa, K.; Kamińska, A.; Niedoba, O.; Michalkiewicz, B. CO2 Adsorption on Activated Carbons Prepared from Molasses: A Comparison of Two and Three Parametric Models. Materials 2021, 14, 7458. https://doi.org/10.3390/ma14237458
  22. Jeppu, G.; Clement, P. A Modified Langmuir-Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129-130, 46–53.https://doi.org/10.1016/j.jconhyd.2011.12.001
  23. Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024–1026.https://doi.org/10.1021/j150576a611
  24. Toth, J. State Equations of the Solid-Gas Interface Layer.Acta Chim. Hung. 1971, 69, 311–317.
  25. Aranovich, G.L. The Theory of Polymolecular Adsorption. Langmuir 1992, 8, 736–739. https://doi.org/10.1021/la00038a071
  26. Hadi, M.; Samarghandi, M. R.; McKay, G. Equilibrium Two- Parameter Isotherms of Acid Dyes Sorption by Activated Carbons: Study of Residual Errors. Chem. Eng. J. 2010, 160, 408–416. https://doi.org/10.1016/j.cej.2010.03.016
  27. Kajama, M. N. Hydrogen Permeation Using Nanostructured Silica Membranes. WIT Trans. Ecol. Environ. 2015, 192, 447–456. https://doi.org/10.2495/SDP150381
  28. Dhaouadi, H.; M’Henni, F. Vat Dye Sorption onto Crude Dehydrated Sewage Sludge. J. Hazard. Mater. 2009, 164, 448–458. https://doi.org/10.1016/j.jhazmat.2008.08.029
  29. Ozdes, D.; Duran, C.; Senturk, H. B.; Avan, H.; Bicer, B. Kinetics, Thermodynamics, and Equilibrium Evaluation of Adsorptive Removal of Methylene Blue onto Natural Illitic Clay Mineral. Desalin. Water Treat. 2013, 52, 208–218. https://doi.org/10.1080/19443994.2013.787554
  30. Özcan, A. S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from Aqueous Solutions onto BTMA-Bentonite. J. Colloid Interface Sci. 2005, 266, 73–81. https://doi.org/10.1016/j.jcis.2004.07.035
  31. Aharoni, C.; Tompkins, F. C. Kinetics of Adsorption and Desorption and the Elovich Equation. Adv. Catal. 1970, 21, 1–49. https://doi.org/10.1016/S0360-0564(08)60563-5
  32. Koble, R. A.; Corrigan, T. E. Adsorption Isotherms for Pure Hydrocarbons. Ind. Eng. Chem. 1952, 44, 383–387. https://doi.org/10.1021/ie50506a049
  33. Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. https://doi.org/10.1155/2017/3039817
  34. Le, N. C.; Van Phuc, D. Sorption of Lead (II), Cobalt (II) and Copper (II) Ions from Aqueous Solutions by γ-MnO2 Nanostructure. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025014. https://doi.org/10.1088/2043- 6262/6/2/025014
  35. Jafari Behbahani, T.J.; Jafari Behbahani, Z. A New Study on Asp- haltene Adsorption in Porous Media. Pet. Coal 2014, 56, 459–466.