Це дослідження присвячене оптимізації процесу коагуляції-флокуляції для очищення забруднювачів у фільтраті зі сміттєзвалища Аззаба, використовуючи природні коагулянти: шкаралупу волоського горіха, насіння Moringa oleifera та листя Opuntia ficus-indica. Шкаралупа волоського горіха за pH 4, дозування коагулянту 12 г/л, швидкості перемішування 300 об/хв та тривалості обробки 25 хвилин продемонструвала значне зниження каламутності (83,92%) і зважених твердих частинок (92%). Opuntia ficus-indica за pH 6, дозування коагулянту 10 г/л, швидкості перемішування 300 об/хв та тривалості обробки 20 хвилин досягла значного зниження каламутності (86%) і зважених твердих частинок (90%). Moringa oleifera за pH 3, дозування коагулянту 6 г/л, швидкості перемішування 300 об/хв та тривалості обробки 35 хвилин показала істотне зменшення каламутності (91%) і зважених твердих частинок (85%). Додавання вапна та крохмалю як флокулянтів додатково покращило ефективність обробки, особливо щодо зниження каламутності. Оптимізація за методом Бокса-Бенкена (BBD) підкреслила виняткову ефективність коагулянтів, особливо їхню надзвичайну продуктивність у видаленні каламутності та зважених твердих частинок. Однак підтримання стабільності pH залишається ключовим для оптимальних результатів. Ці результати підкреслюють ефективність природних коагулянтів, особливо шкаралупи волоського горіха, в очищенні фільтрату, демонструючи перспективний підхід до екологічної реабілітації.
[1] Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent Advances in Municipal Landfill Leachate: A Review Focusing on its Characteristics, Treatment, and Toxicity Assessment. Sci. Total Environ. 2020, 703, 135468. https://doi.org/10.1016/j.scitotenv.2019.135468
[2] Kun, W.; Febelyn, R.; Tao, Z. Risk Assessment and Investigation of Landfill Leachate as a Source of Emerging Organic Contaminants to the Surrounding Environment: A Case Study of the Largest Landfill in Jinan City, China. Environ. Sci. Pollut. Res. 2021, 28, 18368– 18381. https://doi.org/10.1007/s11356-020-10093-8
[3] Li, W.; Hua, T.; Zhou, Q.; Zhang, S.; Li, F. Treatment of Stabilized Landfill Leachate by the Combined Process of Coagulation/Flocculation and Powder Activated Carbon Adsorption. Desalination 2010, 264, 56–62. https://doi.org/10.1016/j.desal.2010.07.004
[4] Assou, M.; El Fels, L.; El Asli, A.; Fakidi, H.; Souabi, S.; Hafidi, M. Landfill Leachate Treatment by a Coagulation – Flocculation Process: Effect of the Introduction Order of the Reagents. Desalin. Water Treat. 2016, 57, 21817–21826. https://doi.org/10.1080/19443994.2015.1127779
[5] Ghaffariraad, M.; Ghanbarzadeh Lak, M. Landfill Leachate Treatment through Coagulation-Flocculation with Lime and Bio-Sorption by Walnut-Shell. J. Environ. Manag. 2021, 68, 226–239. https://doi.org/10.1007/s00267-021-01489-4
[6] Azreen, I.; Abu Zahrim, Y. Colour Removal from Biologically Treated Landfill Leachate with Tannin-Based Coagulant. J. Environ. Chem. Eng. 2019, 7, 103483. https://doi.org/10.1016/j.jece.2019.103483
[7] Ayat, A.; Arris, S.; Bencheikh-Lehocine, M.; Meniai, A. H. Landfill Leachate Pretreatment by Biocoagulation / Bioflocculation Process Using Plant-Based Coagulant (Optimization by Response Surface Methodology). Desalin. Water Treat. 2021, 235, 66–79. https://doi.org/10.5004/dwt.2021.27584
[8] Labanowski, J.; Pallier, V.; Feuillade-Cathalifaud, G. Study of Organic Matter During Coagulation and Electrocoagulation Processes: Application to a Stabilized Landfill Leachate. J. Hazard. Mater. 2010, 179, 166–172. https://doi.org/10.1016/j.jhazmat.2010.02.074
[9] Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077
[10] Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Weber, J. V. Landfill Leachate Treatment Methods. Environ. Chem. Lett. 2006, 4, 51–61. https://doi.org/10.1007/s10311-005-0016-z
[11] Ang, W. L.; Mohammad, A. W. State of the Art and Sustainability of Natural Coagulants in Water and Wastewater Treatment. J. Clean. Prod. 2020, 262, 121267. https://doi.org/10.1016/j.jclepro.2020.121267
[12] Megersa, M.; Beyene, A.; Ambelu, A. Comparison of Purified and Crude Extracted Coagulants from Plant Species for Turbidity Removal. Int. J. Environ. Sci. Technol. 2019, 16, 2333–2342, https://doi.org/10.1007/s13762-018-1844-2
[13] Taiwo, A. S.; Adenike, K.; Aderonke, O. Efficacy of a Natural Coagulant Protein from Moringa oleifera (Lam) Seeds in Treatment of Opa Reservoir Water, Ile-Ife, Nigeria. Heliyon 2020, 6, e03335. https://doi.org/10.1016/j.heliyon.2020.e03335
[14] Shan, T. C.; Matar, M. A.; Makky, E. A.; Ali, E. N. The Use of Moringa oleifera Seed as a Natural Coagulant for Wastewater Treatment and Heavy Metals Removal. Appl. Water Sci. 2017, 7, 1369–1376. https://doi.org/10.1007/s13201-016-0499-8
[15] Choudhary, M.; Ray, M. B.; Neogi, S. Evaluation of the Potential Application of Cactus (Opuntia Ficus-Indica) as a Bio- Coagulant for Pre-Treatment of Oil Sands Process-Affected. Water. Sep. Purif. Technol. 2019, 209, 714–724. https://doi.org/10.1016/j.seppur.2018.09.033
[16] Yunos, F. H. M.; Nasir, N. M.; Jusoh, H. H. W.; Khatoon, H.; Lam, S. S.; Jusoh, A. Harvesting of Microalgae (Chlorella sp.) from Aquaculture Bioflocs Using an Environmental-Friendly Chitosan- Based Bio-Coagulant. Int. Biodeterior. Biodegrad. 2017, 124, 243–249. https://doi.org/10.1016/j.ibiod.2017.07.016
[17] Bourechech, Z.; Abdelmalek, F.; Ghezzar, M. R.; Addou, A. Treatment of Leachate from Municipal Solid Waste of Mostaganem District in Algeria: Decision Support for Advising a Process Treatment. Waste Manag. Res. 2018, 36, 68–78. https://doi.org/10.1177/0734242X17739970
[18] Djeffal, K.; Bouranene, S.; Fievet, P.; Déon, S.; Gheid, A. Treatment of Controlled Discharge Leachate by Coagulation- Flocculation: Influence of Operational Conditions. Sep. Sci. Technol. 2021, 56, 168–183. https://doi.org/10.1080/01496395.2019.1708114
[19] Liu, D.; Yuan, Y.; Wei, Y.; Zhang, H.; Si, Y.; Zhang, F. Removal of Refractory Organics and Heavy Metals in Landfill Leachate Concentrate by Peroxi-Coagulation Process. J. Environ. Sci. 2022, 116, 43–51. https://doi.org/10.1016/j.jes.2021.07.006
[20] Assou, M.; El Fels, L.; El Asli, A.; Fakidi, H.; Souabi, S.; Hafidi, M. Landfill Leachate Treatment by a Coagulation – Flocculation Process: Effect of the Introduction Order of the Reagents. Desalin. Water Treat. 2016, 57, 21817–21826. https://doi.org/10.1080/19443994.2015.1127779
[21] Cheng, S. Y.; Show, P. L.; Juan, J. C.; Chang, J. S.; Lau, B. F.; Lai, S. H.; Ling, T. C. Landfill Leachate Wastewater Treatment to Facilitate Resource Recovery by a Coagulation-Flocculation Process via Hydrogen Bond. Chemosphere 2021, 262, 127829. https://doi.org/10.1016/j.chemosphere.2020.127829
[22] Banch, T. J.; Hanafiah, M. M.; Alkarkhi, A. F.; Abu Amr, S. S. Factorial Design and Optimization of Landfill Leachate Treatment Using Tannin-Based Natural Coagulant. Polymers 2019, 11, 1349. https://doi.org/10.3390/polym11081349
[23] Hasna, M.; Hafida, H.; Brahim, L.; Laila, M.; Mohammed, M. Physico-Chemical Treatment of Landfill Leachates Case of the Landfill of Fkih Ben Salah, Morocco. J. Environ. Sci. 2016, 10, 41– 50. https://doi.org/10.9790/2402-1012014150
[24] Anyaene, I. H.; Onukwuli, O. D.; Babayemi, A. K.; Obiora- Okafo, I. A.; Ezeh, E. M. Application of Bio Coagulation– Flocculation and Soft Computing Aids for the Removal of Organic Pollutants in Aquaculture Effluent Discharge. Chem. Afr. 2024, 7, 455–478. https://doi.org/10.1007/s42250-023-00754-9
[25] Azreen, I.; Abu Zahrim, Y. Colour Removal from Biologically Treated Landfill Leachate with Tannin-Based Coagulant. Environ. Chem. Eng. 2019, 7, 103483. https://doi.org/10.1016/j.jece.2019.103483
[26] Sohrabi, Y.; Rahimi, S.; Nafez, A. H.; Mirzaei, N.; Bagheri, A.; Ghadiri, S. K.; Rezaei, S.; Charganeh, S. S. Chemical Coagulation Efficiency in Removal of Water Turbidity. Int. J. Pharm. Res. 2018, 10, 188–194. https://doi.org/10.31838/ijpr/2018.10.03.071
[27] Wei, N.; Zhang, Z.; Liu, D.; Wu, Y.; Wang, J.; Wang, Q. Coagulation Behavior of Polyaluminum Chloride: Effects of pH and Coagulant Dosage. Chin. J. Chem. Eng. 2015, 23, 1041–1046. https://doi.org/10.1016/j.cjche.2015.02.003
[28] De Oliveira, M. S.; Da Silva, L. F.; Barbosa, A. D.; Romualdo, L. L.; Sadoyama, G.; Andrade, L. S. Landfill Leachate Treatment by Combining Coagulation and Advanced Electrochemical Oxidation Techniques. ChemElectroChem. 2019, 6, 1427–1433. https://doi.org/10.1002/celc.201801677
[29] Maranon, E.; Castrillon, L.; Fernandez-Nava, Y.; Fernandez- Mendez, A.; Fernandez-Sanchez, A. Coagulation – Flocculation as a Pretreatment Process at a Landfill Leachate Nitrification– Denitrification Plant. J. Hazard. Mater. 2008, 156, 538–544. https://doi.org/10.1016/j.jhazmat.2007.12.084
[30] Awodiji, C. T. G.; Nwachukwu, A. N.; Onyechere, C. I.; Iyidiobi, R. G.; Nwabueze, B. J. The Effectiveness of Hydrated Lime as a Flocculating Agent in Water Treatment. Saudi J. Civ. Eng. 2020, 4, 30–37. https://doi.org/10.36348/sjce.2020.v04i03.001
[31] Teh, C. Y.; Budiman, P. M.; Shak, K. P. Y.; Wu, T. Y. Recent Advancement of Coagulation – Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. https://doi.org/10.1021/acs.iecr.5b04703
[32] Benouis, K.; Alami, A.; Khalfi, Y.; Guella, S.; Khane, Y. Optimization of Coagulation Parameters for Turbidity Removal Using Box – Behnken Model. In 2nd International Conference on Industry 4.0 and Artificial Intelligence; Atlantis Press, 2022; pp. 114–121.
[33] Sibiya, N. P.; Amo-Duodu, G.; Tetteh, E. K.; Rathilal, S. Response Surface Optimisation of a Magnetic Coagulation Process for Wastewater Treatment via Box – Behnken. Mater. Today 2022, 62, S122–S126. https://doi.org/10.1016/j.matpr.2022.02.098
[34] Kumar, S. S.; Bishnoi, N. R. Coagulation of Landfill Leachate by FeCl3: Process Optimization Using Box – Behnken Design (RSM). Appl. Water Sci. 2017, 7, 1943–1953. https://doi.org/10.1007/s13201-015-0372-1
[35] Elhadeuf, K.; Bougdah, N.; Chikhi, M. Optimization of Textile Wastewater Treatment by Electrocoagulation-Microfiltration Using Recycled Electrodes and Box – Behnken Design. Reac. Kinet. Mech. Cat. 2023, 136, 981–1003. https://doi.org/10.1007/s11144- 023-02395-y
[36] Abu Amr, S. S.; Aziz, H. A.; Bashir, M. J. Application of Response Surface Methodology (RSM) for Optimization of Semi- Aerobic Landfill Leachate Treatment Using Ozone. Appl. Water Sci. 2014, 4, 231–239. https://doi.org/10.1007/s13201-014-0156-z
[37] Jalil, M. J.; Rasnan, N. H. A.; Yamin, A. F. M.; Zaini, M. S. M.; Morad, N.; Azmi, I. S.; Mahadi, M. B.; Yeop, M. Z. Optimization of Epoxidation Palm-Based Oleic Acid to Produce Polyols. Chem. Chem. Technol. 2022, 16, 66–73. https://doi.org/10.23939/chcht16.01.066
[38] Djeghader, I.; Bendebane, F.; Ismail, F. Interaction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design. Chem. Chem. Technol. 2023, 17, 154–163. https://doi.org/10.23939/chcht17.01.154
[39] Bashir, M. J.; Aziz, H. A.; Yusoff, M. S.; Aziz, S. Q.; Mohajeri, S. Stabilized Sanitary Landfill Leachate Treatment Using Anionic Resin: Treatment Optimization by Response Surface Methodology. J. Hazard. Mater. 2010, 182, 115–122. https://doi.org/10.1016/j.jhazmat.2010.06.005
[40] Tak, B. Y.; Tak, B. S.; Kim, Y. J.; Park, Y. J.; Yoon, Y. H.; Min, G. H. Optimization of Color and COD Removal from Livestock Wastewater by Electrocoagulation Process: Application of Box-Behnken Design (BBD). J. Ind. Eng. Chem. 2015, 28, 307– 315. https://doi.org/10.1016/j.jiec.2015.03.008