Синтез та оптимізація діелектричних властивостей гібридних наноструктур пмма/пег/титанат барію для накопичення енергії й електронних застосувань

2025;
: cc. 277 - 285
1
Department of Ceramic and Building Materials, College of Materials Engineering, University of Babylon
2
Department of Physics, College of Education for Pure Sciences, University of Babylon
3
Building and Construction Technologies Engineering Department, College of Engineering and Engineering Technologies, Al-Mustaqbal University
4
Department of Physics, College of Education for Pure Sciences, University of Babylon
5
University of Kerbala, College of Engineering, Petroleum Engineering Department
6
University of Babylon, College of materials Engineering,, Department of polymer and Petrochemical Industries

Це дослідження спрямоване на покращення діелектричних властивостей суміші поліметилметакрилату (ПММА) та поліетиленгліколю (ПЕГ) з додаванням наночастинок титанату барію (BaTiO3) для використання в електроніці та діелектричних галузях. Нанокомпозитні плівки ПММА/ПЕГ/BaTiO3 були виготовлені методом лиття. Були перевірені морфологічні та діелектричні характеристики нанокомпозитних плівок ПММА/ПЕГ/BaTiO3. Діелектричні характеристики були досліджені за допомогою LCR-метра за частот від 100 Гц до 5 МГц. Результати діелектричних характеристик підтвердили, що існує зростання діелектричних параметрів суміші ПММА/ПЕГ зі збільшенням вмісту наночастинок BaTiO3. Діелектричні властивості нанокомпозитних плівок ПММА/ПЕГ/BaTiO3 змінювалися з підвищенням частоти. Нарешті, діелектричні характеристики показують, що нанокомпозитні плівки ПММА/ПЕГ/BaTiO3 можуть бути використані в різних електричних та наноелектронних застосуваннях з високим накопиченням енергії, малою вагою, низькою вартістю та гнучкістю.

[1]     Rehman, S. U.; Javaid, S.; Shahid, M.; Gul, I. H.; Rashid, B.; Szczepanski, C. R.; Naveed, M.; Curley, S. J. Polystyrene-Sepiolite Clay Nanocomposites with Enhanced Mechanical and Thermal Properties. Polymers 2022, 14, 3576. https://doi.org/10.3390/polym14173576

[2]     Wang, Q.; Che, J.; Wu, W.; Hu, Z.; Liu, X.; Ren, T.; Chen, Y.; Zhang, J. Contributing Factors of Dielectric Properties for Polymer Matrix Composites. Polymers 2023, 15, 590. https://doi.org/10.3390/polym15030590

[3]     Vyshakh, K.; Arun, K.; Sathian, R.; Furhan, A.; Verma, M.; Ramesan, M. Effect of Boehmite Nanoparticles on Structural, Optical, Thermal, Mechanical and Electrical Properties of poly(Methyl Methacrylate) Nanocomposites for Flexible Optoelectronic Devices. J. Thermoplast. Compos. Mater. 2023, 36, 4927–4944. https://doi.org/10.1177/08927057231167418

[4]     Suvarna, S.; Niranjana, V.; Subburaj, M.; Ramesan, M. Temperature-Dependent Conductivity, Optical Properties, Thermal Stability and Dielectric Modelling Studies of Cu-Al2O3/CPE/PVC Blend Nanocomposites. Bull. Mater. Sci. 2022, 45, 246. https://doi.org/10.1007/s12034-022-02829-8

[5]     El-Naggar, A.; Heiba, Z. K.; Kamal, A.; Abd-Elkader, O. H.; Mohamed, M. B. Impact of ZnS/Mn on the Structure, Optical, and Electric Properties of PVC Polymer. Polymers 2023, 15, 2091. https://doi.org/10.3390/polym15092091

[6]     Vanskeviče, I.; Kinka, M.; Banys, J.; Macutkevič, J.; Schaefer, S.; Selskis, A.; Fierro, V.; Celzard, A. Dielectric and Ultrasonic Properties of PDMS/TiO2 Nanocomposites. Polymers 2024, 16, 603. https://doi.org/10.3390/polym16050603

[7]     Papava, G.; Chitrekashvili, I.; Tatrishvili, T.; Gurgenishvili, M.; Archvadze, K.; Dokhturishvili, N.; Gavashelidze, E.; Gelashvili, N.; Liparteliani, R. Synthesis and Investigation of Properties of Epoxy-Novolac Copolymers Based on Polycyclic Bisphenols of Norbornane Type. Chem. Chem. Technol. 2024, 18, 546–557. https://doi.org/10.23939/chcht18.04.546

[8]     Bafna, M.; Deeba, F.; Gupta, A. K.; Shrivastava, K.; Kulshrestha, V.; Jain, A. Analysis of Dielectric Parameters of Fe2O3-Doped Polyvinylidene Fluoride / Poly(methyl methacrylate) Blend Composites. Molecules 2023, 28, 5722. https://doi.org/10.3390/molecules28155722

[9]     Guimarães, N. E.; Ximenes, É. R.; da Silva, L. A.; da Silva Santos, R. F.; Araújo, E. S.; da Silva Aquino, K. A. Electrical and Optical Properties of Poly(vinyl chloride)/ZnS Nanocomposites Exposed to Gamma Radiation. Mater. Res. 2023, 26, e20220308. https://doi.org/10.1590/1980-5373-mr-2022-0308

[10]   Deeba, F.; Shrivastava, K.; Bafna, M.; Jain, A. Tuning of Dielectric Properties of Polymers by Composite Formation: The Effect of Inorganic Fillers Addition. J. Compos. Sci. 2022, 6, 355. https://doi.org/10.3390/jcs6120355

[11]  Abbas, M. H.; Hadi, A.; Rabee, B. H.; Habeeb, M. A.; Mohammed, M. K.; Hashim, A. Enhanced Dielectric Characteristics of Cr2O3 Nanoparticles Doped PVA/PEG for Electrical Applications. Rev. Compos. Mater. Av. 2023, 33, 261. https://doi.org/10.18280/rcma.330407

[12]   Yaqub, N.; Farooq, W.; AlSalhi, M. Delving into the Properties of Polymer Nanocomposites with Distinctive Nano- Particle Quantities, for the Enhancement of Optoelectronic Devices. Heliyon 2020, 6, e05597. https://doi.org/10.1016/j.heliyon.2020.e05597

[13]   Abbas, M. H.; Ibrahim, H.; Hashim, A.; Hadi, A. Fabrication and Tailoring Structural, Optical, and Dielectric Properties of PS/CoFe2O4 Nanocomposites Films for Nanoelectronics and Optics Applications. Trans. Electr. Electron. Mater. 2024, 25, 449–457. https://doi.org/10.1007/s42341-024-00524-5

[14]   Sarhan, A. Characterization of Chitosan and Polyethylene Glycol Blend Film. Egypt. J. Chem. 2019, 62, 405–412. https://doi.org/10.21608/ejchem.2019.11668.1743

[15]  Ali, W. A.; Mihsen, H. H., Guzar, S. H. Synthesis, Characterization and Antibacterial Activity of Sn (II) and Sn (IV) Ions Complexes Containing N-Alkyl-N-Phenyl Dithiocarbamate Ligands. Chem. Chem. Technol. 2023, 17, 729–739. https://doi.org/10.23939/chcht17.04.729

[16]    Mohammed, M. K.; Abbas, M. H.; Hashim, A.; Rabee, R.; Habeeb, M. A.; Hamid, N. Enhancement of Optical Parameters for PVA/PEG/Cr2O3 Nanocomposites for Photonics Fields. Rev. Compos. Mater. Av. 2022, 32, 205–209. https://doi.org/10.18280/rcma.320406

[17]   Gioti, S.; Sanida, A.; Mathioudakis, G. N.; Patsidis, A. C.; Speliotis, T.; Psarras, G. C. Multitasking Performance of Fe3O4/BaTiO3/Epoxy Resin Hybrid Nanocomposites. Materials 2022, 15, 1784. https://doi.org/10.3390/ma15051784

[18]    Huang, C.-L. A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass. Coatings 2020, 10, 781. https://doi.org/10.3390/coatings10080781

[19] Ahmed, H.; Hashim, A. Design and Tailoring the Structural and Spectroscopic Characteristics of Sb2S3 Nanostructures Doped PMMA for Flexible Nanoelectronics and Optical Fields. Opt. Quantum Electron. 2023, 55, 280. https://doi.org/10.1007/s11082-022-04528-4

[20]   Hazim, A.; Abduljalil, H. M.; Hashim, A. Design of PMMA Doped with Inorganic Materials as Promising Structures for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 851–868. https://doi.org/10.1007/s42341-021-00308-1

[21]   Hashim, A.; Alshrefi, S. M.; Abed, H. H.; Hadi, A. Synthesis and Boosting the Structural and Optical Characteristics of PMMA/SiC/CdS Hybrid Nanomaterials for Future Optical and Nanoelectronics Applications. J. Inorg. Organomet. Polym. Mater. 2024, 34, 703–711. https://doi.org/10.1007/s10904-023-02866-8

[22]   Ahmed, H.; Hashim, A. Lightweight, Flexible and High Energies Absorption Property of PbO2 Doped Polymer Blend for Various Renewable Approaches. Trans. Electr. Electron. Mater. 2021, 22, 335–345. https://doi.org/10.1007/s42341-020-00244-6

[23]   Hazim, A.; Abduljalil, H. M.; Hashim, A. First Principles Calculations of Electronic, Structural and Optical Properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) Nanocomposites for Optoelectronics Applications. Trans. Electr. Electron. Mater. 2021, 22, 185–203. https://doi.org/10.1007/s42341-020-00224-w

[24]   Ahmed, H.; Hashim, A. Geometry Optimization, Optical and Electronic Characteristics of Novel PVA/PEO/SiC Structure for Electronics Applications. Silicon 2021, 13, 2639–2644. https://doi.org/10.1007/s12633-020-00620-0

[25]   Ahmed, H.; Hashim, A. Structure, Optical, Electronic and Chemical Characteristics of Novel (PVA-CoO) Structure Doped with Silicon Carbide. Silicon 2021, 13, 4331–4344. https://doi.org/10.1007/s12633-020-00723-8

[26]   Ahmed, H.; Hashim, A. Design and Tailoring the Optical and Electronic Characteristics of Silicon Doped PS/SnS2 New Composites for Nano-Semiconductors Devices. Silicon 2022, 14, 6637–6643. https://doi.org/10.1007/s12633-021-01449-x

[27]   Ahmed, H.; Hashim, A. Exploring the Design, Optical and Electronic Characteristics of Silicon Doped (PS-B) New Structures for Electronics and Renewable Approaches. Silicon 2022, 14, 7025–7032. https://doi.org/10.1007/s12633-021-01465-x

[28]   Ahmed, H., Hashim, A. Exploring the Characteristics of New Structure Based on Silicon Doped Organic Blend for Photonics and Electronics Applications. Silicon 2022, 14, 4907–4914. https://doi.org/10.1007/s12633-021-01258-2

[29]   Hashim, A.; Abduljalil, H. M.; Ahmed, H. Analysis of Optical, Electronic and Spectroscopic properties of (Biopolymer- SiC) Nanocomposites for Electronics Applications. Egypt. J. Chem. 2019, 62, 1659–1672.https://doi.org/10.21608/EJCHEM.2019.7154.1590

[30]   Althobaiti, M. G.; Alosaimi, M. A.; Alharthi, S. S.; Alotaibi, A. A.; Badawi, A. Tailoring the Optical Performance of Sprayed NiO Nanostructured Films through Cobalt Doping for Optoelectronic Device Applications. Opt. Mater. 2024, 151, 115341. https://doi.org/10.1016/j.optmat.2024.115341

[31]   Badawi, A. Enhancement of the Optical Properties of PVP Using Zn1-xSnxS for UV-Region Optical Applications. Appl. PhysA 2021, 127, 51. https://doi.org/10.1007/s00339-020-04157-2

[32]   Badawi, A. Engineering the Optical Properties of PVA/PVP Polymeric Blend in situ Using Tin Sulfide for Optoelectronics. Appl. Phys. A 2020, 126, 335. https://doi.org/10.1007/s00339-020-03514-5

[33]   Alharthi, S. S.; Althobaiti, M. G.; Aljohani, T.; Algethami, M.; Badawi, M. Correlation between the Optical Parameters of CuO Polymeric Nanocomposite and Gamma Dose for Applications in Irradiation Issues. Opt. Mater. 2024, 150, 115164. https://doi.org/10.1016/j.optmat.2024.115164

[34]   Alharthi, S. S.; Badawi, A. Tailoring the Linear and Nonlinear Optical Characteristics of PVA/PVP Polymeric Blend Using Co0.9Cu0.1S Nanoparticles for Optical and Photonic Applications. Opt. Mater. 2022, 127, 112255. https://doi.org/10.1016/j.optmat.2022.112255

[35]   Badawi, A.; Alharthi, S. S. Enhancement the Optical and Electrical Performance of PVA/MWCNTs Blend via Cu/ZnS Nanoparticles Doping for Flexible Eco-Friendly Applications. Appl. Phys. A 2023, 129, 372. https://doi.org/10.1007/s00339-023-06640-y

[36]   Badawi, A.; Alharthi, S. S.; Assaedi, H.; Alharbi, A. N.; Althobaiti, M. G. Cd0.9Co0.1S Nanostructures Concentration Study on the Structural and Optical Properties of SWCNTs/PVA Blend. Chem. Phys. Lett. 2021, 775, 138701. https://doi.org/10.1016/j.cplett.2021.138701

[37]   Badawi, A.; Mersal, G. A. M.; Shaltout, A. A.; Boman, J.; Alsawat, M.; Amin, M. A. Exploring the Structural and Optical Properties of FeS Filled Graphene / PVA Blend for Environmental- Friendly Applications. J. Polym. Res 2021, 28, 270. https://doi.org/10.1007/s10965-021-02626-7

[38]   Badawi, A.; Alharthi, S. S.; Alotaibi, A. A.; Althobaiti, M. G. Investigation of the Mechanical and Electrical Properties of SnS Filled PVP/PVA Polymeric Composite Blends. J. Polym. Res. 2021, 28, 205. https://doi.org/10.1007/s10965-021-02569-z

[39]   Badawi, A.; Alharthi, S. S. A Comprehensive Study of the Linear/Nonlinear Optical and Electrical Features of rGO/Co: TiO2 Nanostructures Incorporated PVP/PVA Blend. J. Inorg. Organomet. Polym. 2024, 34, 5805–5816. https://doi.org/10.1007/s10904-024- 03215-z

[40]   Alharthi, S. S.; Badawi, A. Effect of Ag/CuS Nanoparticles Loading to Enhance Linear/Nonlinear Spectroscopic and Electrical Characteristics of PVP/PVA Blends for Flexible Optoelectronics. J. Vinyl. Add. Tech. 2024, 30, 230–243. https://doi.org/10.1002/vnl.22044

[41]   Grytsenko, O.; Bratychak Jr., M.; Dulebova, L.; Gajdoš, I. Thermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone. Chem. Chem. Technol. 2024, 18, 37–43. https://doi.org/10.23939/chcht18.01.037

[42]   Ouis, N.; Belarbi, A.; Mesli, S.; Benharrats, N. Improvement of Electrical Conductivity and Thermal Stability of Polyaniline- Maghnite Nanocomposites. Chem. Chem. Technol. 2023, 17, 118–125. https://doi.org/10.23939/chcht17.01.118

[43]   Ghasemi, A.; Ghasemi, Z. Application of SD/MNP/PEI Nanocomposite for Heavy Metals Sorption. Chem. Chem. Technol. 2023, 17, 878–886. https://doi.org/10.23939/chcht17.04.878

[44] Abdel-Baset, T.; Hassen, A. Dielectric Relaxation Analysis and Ac Conductivity of Polyvinyl Alcohol/Polyacrylonitrile Film. Physica B 2016, 499, 24–28. https://doi.org/10.1016/j.physb.2016.07.002

[45]   Shivashankar, H.; Mathias, K. A.; Sondar, P. R.; Shrishail, M.; Kulkarni, S. Study on low-Frequency Dielectric Behavior of the Carbon Black / Polymer Nanocomposite. J. Mater. Sci.: Mater. Electron. 2021, 32, 28674–28686. https://doi.org/10.1007/s10854-021-07242-1

[46]   Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711–718. https://doi.org/10.23939/chcht17.04.711

[47]   Elbayoumy, E.; El-Ghamaz, N. A.; Mohamed, F. S.; Diab, M. A.; Nakano, T. Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked- Vinyl Polymers and their Pd (OAc) 2 Composites. Polymers 2021, 13, 3005. https://doi.org/10.3390/polym13173005

[48]   El-Wahab, A.; Aly, L.; El-Hag, A. Dielectric Properties, Impedance Analysis, and Electrical Conductivity of Ag Doped Radiation Grafted Polypropylene. Egypt. J. Radiat. Sci. Appl. 2017, 30, 95–107. https://doi.org/10.21608/ejrsa.2017.1260

[49]   Alhusaiki-Alghamdi, H. M. The Spectroscopic and Physical Properties of PMMA/PCL Blend Incorporated with Graphene Oxide. Results Phys. 2021, 24, 104125. https://doi.org/10.1016/j.rinp.2021.104125

[50]    Beena, P.; Jayanna, H. Dielectric Studies and AC Conductivity of Piezoelectric Barium Titanate Ceramic Polymer Composites. Polym. Polym. Compos. 2019, 27, 619–625. https://doi.org/10.1177/0967391119856140

[51]    Hasan, A. S.; Mohammed, F. Q.; Takz, M. M. Design and Synthesis of Graphene Oxide-Based Glass Substrate and its Antimicrobial Activity against MDR Bacterial Pathogens. J. Mech. Eng. Res. Dev. 2020, 43, 11–17.

[52]   Kadhim, A. F.; Hashim, A. Fabrication and Tuning the Structural and Dielectric Characteristics of PS/SiO2/SrTiO3 Hybrid Nanostructures for Nanoelectronics and Energy Storage Devices. Silicon 2023, 15, 4613–4621. https://doi.org/10.1007/s12633-023- 02381-y

[53]   Reddy, P. L.; Deshmukh, K.; Chidambaram, K.; Ali, M. M. N.; Sadasivuni, K. K.; Kumar, Y. R.; Lakshmipathy, R.; Pasha, S. K. Dielectric Properties of Polyvinyl Alcohol (PVA) Nanocomposites Filled with Green Synthesized Zinc Sulphide (ZnS) Nanoparticles. J. Mater. Sci.: Mater. Electron. 2019, 30, 4676–4687. https://doi.org/10.1007/s10854-019-00761-y

[54]   Mishra, S. Dielectric Behavior of Bio-Waste Reinforced Polymer Composites. Global Journal Of Engineering Science And Researches 2014, 1, 32–44.

[55]   Meteab, M. H.; Hashim, A.; Rabee, B. H. Controlling the Structural and Dielectric Characteristics of PS-PC/Co2O3-SiC Hybrid Nanocomposites for Nanoelectronics Applications. Silicon 2023, 15, 251–261. https://doi.org/10.1007/s12633-022-02020-y

[56]   Hussien, H. A. J.; Hashim, A. Synthesis and Exploring the Structural, Electrical and Optical Characteristics of PVA/TiN/SiO2 Hybrid Nanosystem for Photonics and Electronics Nanodevices. J. Inorg. Organomet. Polym. 2023, 33, 2331–2345. https://doi.org/10.1007/s10904-023-02688-8

[57]   Hashim, A.; Hadi, Q. Novel of (Niobium Carbide/Polymer Blend) Nanocomposites: Fabrication and Characterization for Pressure Sensor. Sens. Lett. 2017, 15, 951–953. https://doi.org/10.1166/sl.2017.3892

[58]   Agool, I. R.; Mohammed, F. S.; Hashim, A. The Effect of Magnesium Oxide Nanoparticles on the Optical and Dielectric Properties of (PVA-PAA-PVP) Blend. Advances in Environmental Biology 2015, 9, 1.

[59]   Ahmed, G.; Hashim, A., Synthesis of PMMA/PEG/Si3N4 Nanostructures and Exploring the Structural and Dielectric Characteristics for Flexible Nanoelectronics Applications. Silicon 2023, 15, 3977–3985. https://doi.org/10.1007/s12633-023-02322-9

[60]   Hashim, A.; Hadi, A.; Al-Aaraji, N. A.-H.; Rashid, F. L. Fabrication and Augmented Structural, Optical and Electrical Features of PVA/Fe2O3/SiC Hybrid Nanosystem for Optics and Nanoelectronics Fields. Silicon 2023, 15, 5725–5734. https://doi.org/10.1007/s12633-023-02471-x

[61]   Hashim, A.; Hadi, A. Synthesis and Characterization of Novel Piezoelectric and Energy Storage Nanocomposites: Biodegradable Materials-Magnesium Oxide Nanoparticles. Ukrainian Journal of Physics 2017, 62, 1050. https://doi.org/10.15407/ujpe62.12.1050

[62]   Hashim, A.; Hadi, A. A Novel Piezoelectric Materials Prepared from (Carboxymethyl Cellulose-Starch) Blend-Metal Oxide Nanocomposites. Sens. Lett. 2017, 15, 1019–1022. https://doi.org/10.1166/sl.2017.3910

[63]   Hashim, A.; Hadi, A.; Al-Aaraji, N. AH. Fabrication and Augmented Electrical and optical Characteristics of PMMA/CoFe2O4/ZnCoFe2O4 Hybrid Nanocomposites for Quantum Optoelectronics Nanosystems. Opt. Quantum Electron. 2023, 55, 716. https://doi.org/10.1007/s11082-023-04994-4

[64]   Meteab, M. H.; Hashim, A.; Rabee, B. H. Synthesis and Characteristics of SiC/MnO2/PS/PC QuaternaryNanostructures for Advanced Nanodielectrics Fields. Silicon 2023, 15, 1609–1620. https://doi.org/10.1007/s12633-022-02114-7

[65]   Huang, X.; Wang, S.; Zhu, M.; Yang, K.; Jiang, P.; Bando, Y.; Golberg, D.; Zhi, C. Thermally Conductive, Electrically Insulating and Melt-Processable Polystyrene/Boron Nitride Nanocomposites Prepared by in situ Reversible Addition Fragmentation Chain Transfer Polymerization. Nanotechnology 2014, 26, 015705. https://doi.org/10.1088/0957-4484/26/1/015705

[66]   Abdullah, O. G.; Saber, D. R.; Hamasalih, L. O. Complexion Formation in PVA/PEO/CuCl2 Solid Polymer Electrolyte. Universal Journal of Materials Science 2015, 3, 1–5. https://doi.org/10.13189/ujms.2015.030101

[67]   Rithin Kumar, N.; Crasta, V.; Bhajantri, R. F., Praveen, B. Microstructural and Mechanical Studies of PVA Doped with ZnO and WO3 Composites Films. J. Polym. 2014, 2014, 846140. https://doi.org/10.1155/2014/846140

[68]   Meteab, M. H.; Hashim, A.; Rabee, B. H. Synthesis and Tailoring the Morphological, Optical, Electronic and Photodegradation Characteristics of PS-PC/MnO2-SiC Quaternary Nanostructures. Opt. Quantum Electron. 2023, 55, 187. https://doi.org/10.1007/s11082-022-04447-4

[69]   Kadhim, A. F.; Hashim, A. Fabrication and Augmented Structural Optical Properties of PS/SiO2/SrTiO3 Hybrid Nano- structures for Optical and Photonics Applications. Opt Quant Elect- ron 2023, 55, 432. https://doi.org/10.1007/s11082-023-04699-8

[70]   Ahmed, G.; Hashim, A. Synthesis and Tailoring Morphological and Optical Characteristics of PMMA/PEG/Si3N4 Hybrid Nanomaterials for Optics and Quantum Nanoelectronics Applications. Silicon 2023, 15, 7085–7093. https://doi.org/10.1007/s12633-023-02572-7

[71]   Hashim, A.; Hadi, A.; Abbas, M. H. Fabrication and Unraveling the Morphological, Optical and Electrical Features of PVA/SnO2/SiC Nanosystem for Optics and Nanoelectronics Applications. Opt. Quantum Electron. 2023, 55, 642. https://doi.org/10.1007/s11082-023-04929-z

[72]   Gaabour, L. Effect of Addition of TiO2 Nanoparticles on Structural and Dielectric Properties of Polystyrene/Polyvinyl Chloride Polymer Blend. AIP Adv. 2021, 11, 105120. https://doi.org/10.1063/5.0062445

[73]   Kareem, A.; Hashim, A.; Hassan, H. B. Ameliorating and Tailoring the Morphological, Structural, and Dielectric Features of Si3N4/CeO2 Futuristic Nanocomposites Doped PEO for Nanoelect- ronic and Nanodielectric Applications. J. Mater. Sci.: Mater. Electron 2024, 35, 461. https://doi.org/10.1007/s10854-024-12278-0

[74]   Vasudevan, P.; Thomas, S. Synthesis and Dielectric Studies of Poly (Vinyl Pyrrolidone)/Titanium Dioxide Nanocomposites. IOP Conf. Ser.: Mater. Sci. Eng. 2015, 73, 012015. https://doi.org/10.1088/1757-899X/73/1/012015