метод найменших квадратів

Chebyshev approximation by the exponent from a rational expression

A method for constructing Chebyshev approximation with relative error of the exponential from a rational expression is proposed.  It implies constructing an intermediate Chebyshev approximation with absolute error by a rational expression of the logarithm of the function being approximated.  The approximation by a rational expression is calculated as the boundary mean-power approximation using an iterative scheme based on the least squares method with two variable weight functions.  The presented results of solving test examples confirm the fast convergence of the metho

Мінімаксне наближення залежності температури від опору термістора

Обґрунтовано доцільність застосування мінімаксного наближення для обчислення параметрів моделей термометричної характеристики термісторів. Мінімаксне наближення забезпечує досягнення найменшої можливої похибки відтворення результатів калібрування, тоді як метод найменших квадратів мінімізує суму квадратів похибок. Для опису залежності температури від опору термістора запропоновано застосування раціонального виразу. Ефективність моделі у вигляді раціонального виразу проілюстровано на реальних результатах калібрування.

Chebyshev approximation of multivariable functions with the interpolation

A method of constructing a Chebyshev approximation of multivariable functions by a generalized polynomial with the exact reproduction of its values at a given points is proposed.  It is based on the sequential construction of mean-power approximations, taking into account the interpolation condition.  The mean-power approximation is calculated using an iterative scheme based on the method of least squares with the variable weight function.  An algorithm for calculating the Chebyshev approximation parameters with the interpolation condition for absolute and relative error is described.  The

Достовірність результатів опрацювання геодезичних даних методом скінченних елементів

Проаналізовано проблеми достовірності результатів опрацювання геодезичних даних методом скінченних елементів. Розкрито деякі оптимізаційні рішення і перспективи методу.

Оптимізація методу найменших квадратів для визначення гармонічних коефіцієнтів на сфері

У сучасному світі знання гравітаційного поля займає вагоме значення, оскільки без таких відомостей неможливе виконання низки сучасних задач, пов’язаних із супутниковими технологіями і не тільки. До таких задач можна зарахувати: запуск ракетоносіїв, прогнозування орбіт супутників, дослідження поверхні Світового океану, взаємна трансформація геодезичних та нормальних висот та багато іншого.