нейронна мережа

Базова архітектура мобільної робототехнічної платформи з інтелектуальною системою управління рухом і захистом передачі даних

Визначено вимоги до мобільної роботехнічної платформи (МРТП) з інтелектуальною системою управління рухом і захистом передачі даних, основними з яких є забезпечення: зменшення габаритів, енергоспоживання та вартості; дистанційного та інтелектуального автономного управління рухом; криптографічного захисту передачі даних у реальному часі; збереження працездатності в умовах дії зовнішніх чинників; адаптації до вимог замовника; здатність самостійно виконувати завдання в умовах невизначеності зовнішньої обстановки.

Проектування системи автоматизованого генерування віршованих творів

 Розглянуто особливості проектування системи автоматизованого генерування віршованих творів, що відкриває нові можливості художнього мовлення та сфери шоу-бізнесу, насамперед підготовки віршів і пісень. Доволі часто тексти пісень без особливого змісту стають успішними через відсутність складних сюжетів, а також через ненав'язливість і легкість їхнього сприйняття слухачами. Проаналізовано відомі літературні джерела та наявні програмні продукти, які можуть генерувати віршовані твори, поєднуючи різні методи та алгоритми.

Розроблення мобільних засобів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі

Сформовано вимоги, вибрано метод і розглянуто основні етапи розроблення мобільних засобів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі. Показано, що розроблення мобільних засобів нейроподібного криптографічного шифрування та дешифрування даних у реальному часі з високою ефективністю використання обладнання зво- диться до мінімізації апаратних затрат із забезпеченням множини вимог, характеристик і обме- жень.

Побудова оптимізованої багатошарової нейронної мережі в межах нелінійної моделі узагальненої похибки

У роботі запропоновано спосіб оптимізації структури багатошарової нейронної мережі на основі мінімізації нелінійної узагальненої похибки, яка ґрунтується на принципі мінімальної довжини опису. Відповідно до цього принципу, узагальнена похибка мережі під час роботи з новими даними визначається похибкою апроксимації даних нейронною мережею у нелінійному наближенні та похибкою опису моделі. З умови мінімуму узагальненої похибки мережі виведено вирази для обчислення оптимального розміру мережі (кількість синаптичних зв’язків та кількість нейронів у прихованих шарах).

Спрощена модель нейронної мережі дискретного часу для паралельного сортування

Запропоновано модель паралельної сортувальної нейронної мережі дискретного часу. Модель описується системою різницевих рівнянь і ступінчастими функціями. Модель базується на спрощеній нейронній схемі дискретного часу, призначеній для ідентифікації максимальних/minimal за значеннями вхідних даних, яка описується різницевим рівнянням і ступінчастими функціями. Визначається обмеження згори на кількість ітерацій, необхідних для досягнення пошуковим процесом збіжності до встановленого стану. Модель не потребує знання діапазону зміни вхідних даних.

Розроблення системи розпізнавання людських облич для відеоспостереження

Досліджено принципи побудови систем спостереження та розпізнавання об’єктів. Наведено класифікацію способів розпізнавання людських облич. Проаналізовано роботу мережі прогресивного калібрування (ПКМ) для розпізнавання людських облич. Розроблено алгоритм розпізнавання облич, створено програмну систему розпізнавання облич і проведено її тестування.

Використання нейронної мережі для розроблення системи уникнення перешкод на дорозі

Досліджено можливості використання нейронної мережі для реалізації системи уникнення перешкод на дорозі. Розглянуто алгоритми, на основі яких може працювати така система, та принципи навчання нейронної мережі. Для проведення дослідження розроблено симулятор на базі Unity та ML Agents. З допомогою симулятора досліджено ефективність навчання та роботи цієї нейронної мережі при різних конфігураціях.

Модель паралельної сортувальної нейронної мережі дискретного часу

Представлено модель паралельної сортувальної нейронної мережі дискретного часу. Модель описується системою різницевих і вихідних рівнянь. Мережа відзначається високою швидкодією, довільною скінченною роздільною здатністю вхідних даних і придатна для обробки невідомих вхідних даних зі скінченними значеннями, розміщених у довільному відомому скінченному діапазоні. Мережа характеризується незначною обчислювальною складністю і складністю схемотехнічної реалізації. Наведено результати комп’ютерного моделювання, які ілюструють ефективність мережі.

A Software Service for the Garbage Type Recognition Based on the Mobile Computing Devices With Graphical Data Input

The article describes problems of determining the type and automatic sorting of household waste using mobile computing devices. All of the required hardware and partially software, required for implementation of this service, are already present in modern smartphones.

Побудова швидкісної моделі поперечної хвилі для складноструктурного геологічного середовища з використанням нейронної мережі (на прикладі даних Південно-Каспійського басейну

Мета. Розробка методу прогнозування двох-трьох мірної швидкісної моделі середовища поперечної хвилі. Досліджується складноструктурне геологічне середовище на базі геофізичних і геологічних даних із застосуванням штучної нейронної мережі. Метод. передбачає побудову та використання моделей середовища за даними геофізичних досліджень свердловин, сейсморозвідки та інших наземних геофізичних методів.