Існує низка проблем, які повинна вирішити мікро- й нанотермометрія, щоб забезпечити подальший прогрес та промислове освоєння виробництва й застосування мікрооб’єктів. Найпершою з них вважається визначення підстав застосування до цих об’єктів поняття “температура” подібно до того, як воно застосовується до макрооб’єктів. Наступною проблемою є оцінювання змін температури контрольованого об’єкта внаслідок акту термометрування, причому незалежно від застосування контактних чи безконтактних методів.
У роботі проведено дослідження на основі оптимізації основного рівняння стану термодинаміки в мікро- та нанообластях. Внаслідок його розв’язання встановлено термодинамічні фактори, що визначають метрологічну характеристику рідинного мікро- і нанотермометра, а також встановлено чинники впливу. З’ясовано, як і наскільки змінюються термометричні характеристики рідинних термометрів у міру зменшення їхніх лінійних розмірів із переходом у мікро- і надалі у нанообласть. Показано, що термометрична характеристика кардинально змінюється зі зменшенням лінійних розмірів, оскільки переважною термодинамічною силою, що визначає чутливість до температури, стає сила поверхневого натягу. Разом з тим, важливим стає фактор співрозмірності контрольованого об’єкта та термометра, проектованого й застосовуваного для вимірювань. Цей фактор визначає методичну похибку вимірювання температури розглянутим термометром. Остання стає доволі значною за умови термометрування об’єкта, співмірного за об’ємно-теплофізичними властивостями з термометром.
Для мікро- і нанотехнологій питання створення нанотермометрів набуває визначального значення, позаяк мінімізація методичної похибки до рівня, нижчого від 1 %, означає, що розміри разом з теплоємністю та питомою вагою термометра повинні бути на порядок меншими за відповідні параметри контрольованого об’єкта.
[1] N. Gong, M. Lu, C. Wang, Y. Chen, L. Chen. Au(Si)-filled b-Ga2O3 nanotubes as wide range high temperature nanothermometers, Appl. Phys .Let., vol.92, iss.7, Nanoscale science and Design, 073101, 2008; 3 p.
[2] H. Hofmann, Advanced nanomaterials, Powder Technology Laboratory, IMX, EPFL, vers.1, Sept 2009.
[3] G. Khaidarov, A. Khaidarov, A. Mashek, The physical nature of liquid surface tension, Vestnik St.Petersburg University, Series 4: Physics and Chemistry, is. 1, p. 3–8, 2011.
[4] S. Yatsyshyn, B. Stadnyk, Ya. Lutsyk, Research in Nanothermometry. Part 3. Characteristics of the Thermometers with liquid- and solid-phase sensitive elements, Sensors & Transducers, vol. 140, is. 5, p. 15–23, 2012.
[5] Surface tension by the ring method (Du Nouy method). [On-line]. Available: https://www.nikhef.nl/~h73/kn1c/praktikum /phywe/LEP/Experim/1_4_05.pdf
[6] Powering nanotechnology devices with novel surface energy generators, Nanowerk Nanotechnology Spotlight, posted: March 5, 2010.