This paper studies a finite-dimensional discrete linear system whose initial state $x_0$ is unknown. We assume that the system is augmented by two output equations, the first one $z_i$ being representing measurements made on the unknown state of the system and the other $y_i$ being representing the corresponding output. The purpose of our work is to introduce two control laws, both in closed-loop of measurements $z_i$ and whose goal is to reduce asymptotically the effects of the unknown part of the initial state $x_0$. The approach that we present consists of both theoretical and algorithmic characterization of the set of such controls. To illustrate our theoretical results, we give a number of examples and numerical simulations.
- Silvério R., Delfim F. M. T. Parameter Estimation, Sansitivity Analysis and Optimal Control of a Periodic Epidemic Model With Application to HRSV in Florida. Statistics, Optimisation and Information Computing. 6 (1), 137–147 (2018).
- Semergui J. Y., Yambwera S. V., Marcus N., Okosun K. O., Witbooi P. J., Abidun G. J. Sensitivity and Optimal Control Analysis of HIV/AIDS Model. Applied Mathematics E-Notes. 19, 606–620, (2019).
- Soldatenko S. A., Yusupov K. M. Sensitivity Analysis in Optimal Control of the Earth's Climate System. Recent Advances in Environmental and Earth Science and Economics. 40–46 (2016).
- Kowalewski A., Emirsajłow Z., Sokołowski J., Krakowiak A. Sensitivity Analysis of Optimal Control Parabolic System with Retardations. In: Mitkowski W., Kacprzyk J., Oprzędkiewicz K., Skruch P. (eds) Trends in Advanced Intelligent Control, Optimization and Automation. KKA 2017. Advances in Intelligent Systems and Computing. 577, 98–107 (2017).
- Lions J. L. Sur les sentinelles des systèmes distribués. Le cas des conditions initiales incomplètes. C. R. Acad. Sci. Paris. 307 (16), 819–823 (1988).
- Lions J. L. Sur les sentinelles des systèmes distribués. Le cas des conditions frontières, termes sources, coefficients incomplètement connus. C. R. Acad. Sci. Paris. 307 (17), 865–870 (1988).
- Lions J. L. Sentinels with special sensitivity. Fifth Symposiym on Control of Distributed Parameter Systems. Perpignan, France (1989).
- Darup M. S., Mönnigmann M. Computation of the largest constraint admissible set for linear continuous-time systems with state and input constraints. IFAC Proceedings Volumes. 47 (3), 5574–5579 (2014).
- Dorea C. E. T., Hennet J. C. Computation of maximal admissible sets of constrained Linear Systems. Proc. 4th IEEE Mediterranean Symposium on New Directions in Control and Automation. 286–291 (1996).
- Gilbert E. G., Tan K. T. Linear systems with state and control constraints. IEEE Transactions on Automatic Control. 36 (9), 1008–1020 (1991).
- Kolmanovsky I., Gilbert E. G. Maximal output admissible sets for discrete-time systems with disturbance inputs. Proceedings of 1995 American Control Conference - ACC'95. 1995–1999 (1995).
- Hirata K., Ohta Y. Exact determinations of the maximal output admissible set for a class of nonlinear systems. Automatica. 44 (2), 526–533 (2008).
- Larrache A., Lhous M., Ben Rhila S., Rachik M., Tridane A. An output sensitivity problem for a class of linear distributed systems with uncertain initial state. Archives of Control Sciences. 30 (1), 139–155 (2020).
- Limpiyamitr A., Ohta Y. On the approximation of maximal output admissible set and reachable set via forward Euler discretization. IFAC Proceedings Volumes. 37 (11), 395–400 (2004).
- Lombardi W., Luca A., Olaru S., Niculescu S.-I. State admissible sets for discrete systems under delay constraints. Proceedings of the 2010 American Control Conference. 5185–5190 (2010).
- Osorio J., Ossareh H. R. A Stochastic Approach to Maximal Output Admissible Sets and Reference Governors. 2018 IEEE Conference on Control Technology and Applications (CCTA). 704–709 (2018).
- Rachik M., Lhous M., Tridane A. On the maximal output admissible set for a class of nonlinear discrete systems. Systems Analysis Modelling Simulation. 42 (11), 1639–1658 (2002).
- Rachik M., Tridane A., Lhous M., Idrissi Kacemi O., Tridane Z. Maximal Output Admissible Set and Admissible Perturbations Set For Nonlinear Discrete Systems. Applied Mathematical Sciences. 1 (32), 1581–1598 (2007).
- Tarbouriech S., Castelan E. B. Maximal admissible polyhedral sets for discrete-time singular systems with additive disturbances. Proceedings of the 36th IEEE Conference on Decision and Control. 4, 3164–3169 (1997).
- Zakary O., Rachik M., Tridane A., Abdelhak A. Identifying the set of all admissible disturbances: discrete-time systems with perturbed gain matrix. Mathematical Modeling and Computing. 7 (2), 293–309 (2020).