Mathematical modeling of fluid flows through the piecewise homogeneous porous medium by R-function method

The stationary fluid flow through a piecewise homogeneous porous medium is considered under the assumption that Darcy's law holds.  The mathematical model of this problem is defined as an elliptic equation for the stream function, supplemented by the second-type boundary conditions at the water boundaries and the first-type boundary conditions at the impervious to liquid boundaries.  The problem statement also includes the conditions of conjugation at the separation line between two soils and the unknown value of fluid discharge, which can be established from the additional integral ratio.  It is proposed to use the structure-variational method of R-functions in order to numerically analyze and solve the current problem.  The complete solution structure for the boundary value problem of stream function regarding the R-functions method is established, moreover, the application of the Ritz method for approximating an unspecified structural formula component is substantiated.  Then, the approximate value of the fluid discharge and the approximate solution of the original problem are found from the additional integral ratio. The computational experiment was carried out with different coefficients of permeability within the area, which has the shape of the lower half ring.  It is established that as the number of coordinate functions increases, the value of fluid discharge becomes constant, indicating the convergence of the proposed method.

  1. Polubarinova-Kochina P. Ja.  Teorija dvizheniya gruntovyh vod. Moskva, Nauka, (1977), (in Russian).
  2. Bomba A. Ja., Bulavackij V. M., Skopeckij V. V.  Nelinijni matematichni modeli procesiv geogidrodinamiki. Kyiv, Naukova dumka (2007), (in Ukrainian).
  3. Vabishevich P. N.  Metod fiktivnyh oblastej v matematicheskoj fizike.  Moskva, Izd-vo MGU (1991), (in Russian).
  4. Vengerskij P.  Pro zadachu sumisnogo ruhu poverhnevih i gruntovih potokiv na teritoriyi vodozboru.  Vіsnik Lvіv. un-tu. Ser. prikl. matem. ta іnf. Vip. 22, 41–53 (2014), (in Ukrainian).
  5. Connor J. J., Brebbia C. A.  Finite Element Techniques for Fluid Flow. London, Newnes-Butterworth (1976).
  6. Lyashko I. I., Velikoivanenko I. M., Lavrik V. I., Misteckij G. E.  Metod mazhorantnyh oblastej v teorii filtracii. Kiev, Naukova dumka (1974), (in Russian).
  7. Lyashko N. I., Velikoivanenko N. M.  Chislenno-analiticheskoe reshenie kraevyh zadach teorii filtracii.  Kiev, Naukova dumka (1973), (in Russian).
  8. Kravchenko V. F., Rvachev V. L.  Algebra logiki, atomarnye funkcii i vejvlety v fizicheskih prilozheniyah.  Moskva, Fizmatlit (2006), (in Russian).
  9. Rvachev V. L.  Teorija R-funkcij i nekotorye ego prilozhenija. Kiev, Naukova dumka (1982), (in Russian).
  10. Blishun A. P., Sidorov M. V.  Metod chislennogo analiza stacionarnogo filtracionnogo techeniya pod gidrotehnicheskim sooruzheniem v kusochno-odnorodnomu grunte.  Visnik Zaporizkogo nacionalnogo universitetu. Seriya: fiziko-matematichni nauki. 2, 5–12 (2012), (in Russian).
  11. Blishun A. P., Sidorov M. V., Jalovega I. G.  Matematicheskoe modelirovanie i chislennyj analiz filtracionnyh techenij pod gidrotehnicheskimi sooruzheniyami s pomoshyu.  Radioelektronika i informatika. 2, 40–46 (2010), (in Russian).
  12. Blishun A. P., Sidorov M. V., Jalovega I. G.  Primenenie metoda R-funkcij k chislennomu analizu filtracionnyh techenij pod gidrotehnicheskimi sooruzheniyami.  Visnik Zaporizkogo nacionalnogo universitetu. Seriya: fiziko-matematichni nauki. 1, 50–56 (2012), (in Russian).
  13. Sidorov M. V., Storozhenko A. V.  Matematicheskoe kompyuternoe modelirovanie nekotoryh filtracionnyh techenij.  Radioelektronika i informatika. 4, 58–61 (2004), (in Russian).
  14. Podhornyi O. R.  Matematichni modeli filtracijnih techij ta zastosuvannya metodu R-funkcij dlya yih chiselnogo analizu.  Radioelektronika ta informatika. 1, 40–47 (2018), (in Ukrainian).
  15. Podhornyi O. R.  Chiselnij analiz metodom R-funkcij filtracijnih techij u neodnoridnomu grunti.  Matematichne ta kompyuterne modelyuvannya. Seriya: Fiziko-matematichni nauki. 18, 147–162 (2018), (in Ukrainian).
  16. Mihlin S. G.  Variacionnye metody v matematicheskoj fizike. Moskva, Nauka (1970), (in Russian).
  17. Rektoris K.  Variacionnye metody v matematicheskoj fizike i tehnike. Moskva, Mir (1985), (in Russian).