Mathematical modeling of non-stationary gas flow modes along a linear section of a gas transmission system

Article demonstrates the applicability of modeling non-stationary non-isothermal gas flow along a linear section of a gas transmission system by means of using various numerically simulated models and sophisticated numerical techniques.  There are described several models of non-stationary non-isothermal regimes of gas flow along the pipeline section.  They are included in the considered general model and their comparative analysis is carried out by the virtue of numerical simulation.  The finite difference algorithm is used to solve the simultaneous equations of the numerically simulated model for the pipeline section.  The results of calculating the gas flow parameters using various models are presented: both with and without taking into account kinetic energy, as well as both with and without taking into account the Joule–Thompson effect.  The matter of choosing the appropriate model is discussed.  The obtained results can be used at the stage of transfer pipeline system operation in order to develop scientifically well-founded recommendations for improving the safety and efficiency of the pipeline transportation system.

  1. Pakin A. K.  Perspektivy razvitiya mirovogo rynka prirodnogo gaza.  Vestnik Rossiyskogo ekonomicheskogo universiteta imeni G. V. Plekhanova. 3, 147–153 (2016), (in Russian).
  2. Sardanashvili S. A.  Raschetnyye metody i algoritmy (truboprovodnyy transport gaza).  Oil and gas, Moscow (2005), (in Russian).
  3. Prytula N.  Mathematical modelling of dynamic processes in gas transmission.  ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes. 4 (3), 57–63 (2015).
  4. Novyckyj N. N., Sukharev M. Gh., Tevjashev A. D.  Truboprovodnyje sistemy energhetiki: Metodicheskije i prikladnyje problemy modelirovanija.  Science, Novosibirsk, pp. 193–204 (2015), (in Russian).
  5. Seleznev V. E., Pryalov S. N.  Metody postroeniya modelej techenij v magistral'nyh truboprovodah i kanalah: monografiya.  Direct-Media, Moscow–Berlin (2014), (in Russian).
  6. Seleznev V. E., Aleshyn V. V., Pryalov S. N.  Osnovy chislennogo modelirovanija magistralnyh truboprovodov.  MAX Press, Moscow (2009), (in Russian).
  7. Tevyashev A. D., Husarova I. H., Churkina A. V.  Effektivnyy metod i algoritm rascheta nestatsionarnykh neizotermicheskikh rezhimov transporta gaza v gazotransportnoy seti proizvol'noy struktury.  Eastern-European Journal of Enterprise Technologies. 2/3 (20), 45–52 (2006).
  8. Seleznev V. E., Aleshyn V. V., Prjalov S. N.  Osnovy chyseljnogho modeljuvannja maghistraljnykh ghazoprovodov. KomKnygha, Moscow (2005), (in Russian).
  9. Helgaker J. F., Müller B., Ytrehus T.  Transient flow in natural gaspipelines using implicit finite difference schemes.  Journal of Offshore Mechanics and Arctic Engineering. 136 (3), 031701–0317011 (2014).
  10. Ermolaeva N. N.  Nestacionarnye modeli teploobmena i transportirovki gaza po morskim gazoprovodam.  Transactions of the Karelian Research Centre of the  Russian Academy of Sciences, Mathematical Modeling and Information Technologies Series. 8, 3–10 (2016), (in Russian).
  11. Ermolaeva N. N.  Kompyuternoe modelirovanie oledeneniya morskogo gazoprovoda i povedeniya harakteristik potoka v neustanovivshihsya rezhimah'.  Bulletin of St. Petersburg University. 4 (10), 75–86 (2016), (in Russian).
  12. Husarova I. H., Melinevskyi D. V.  Chislennoye modelirovaniye perekhodnykh rezhimov techeniya gaza s ispol'zovaniyem razlichnykh konechno-raznostnykh setok.  Information Processing Systems. 2, 29–33 (2017), (in Russian).
  13. Wang P., Yu B., Han D., Li J., Sun D., Xiang Y., Wang L.  Adaptive implicit finite difference method for natural gas pipeline transient flow.  Oil Gas Sci. Technol. 73, 21 (2018).
  14. Zhang L.  Simulation of the transient flow in a natural gas compression system using a high-order upwind scheme considering the real-gas behaviors.  Journal of Natural Gas Science and Engineering. 28, 479–490 (2016).
  15. Sung W.-P., Chen R.  Application of $\pi$ Equivalent Circuit in Mathematic Modeling and Simulation of Gas Pipeline.  Applied Mechanics and Materials. 496, 943–946 (2014).
  16. Husarova I. H., Korotenko A. N.  Rezultaty chislennogo modelirovanija perekhodnykh rezhimov techenija gaza po uchastku truboprovoda metodom harakteristik.  Information Processing Systems. 2 (153), 18–26 (2018), (in Russian).
  17. Helgaker J. F.  Modeling Transient Flow in Long Distance Offshore Natural Gas Pipelines.  PhD Thesis. Trondheim (2013).
  18. Zheng Y., Xiao J., Sun X., Hua H., Fang G.  Application and understanding of Stoner Pipeline Simulator (SPS).  Natural Gas Industry. 33, 104–109 (2013).
  19. Zheng J. G., Chen G. Q., Song F., Ai-Mu Y., Zhao J. L.  Research on simulation model and solving technology of large scale gas pipe network.  Journal of System Simulation. 24 (6), 1339–1344 (2012).
  20. Husarova I. H., Boyarskaya Y. V.  Klassy zadach modelirovaniya i chislennogo analiza nestatsionarnykh rezhimov raboty gazotransportnoy sistemy.  Eastern-European Journal of Enterprise Technologies. 3/6 (45), 26–32 (2010), (in Russian).
  21. Galuza A., Grinberg G., Tevyasheva O., Lyubchyk L.  Modeling and Optimization of Gas Transmission Systems under Uncertain Operation Conditions.  2019 9th International Conference on Advanced Computer Information Technologies (ACIT). 80–83  (2019).
  22. Pyanylo Ya., Prytula N., Prytula M., Khymko O.  On an invariant of a non-stationary model of pipelines gas flow.  Mathematical Modeling and Computing. 6 (1), 116–128 (2019).