Use of pyrocarbon obtained in the process of pyrolysis of rubber waste for absorption of oil and Petroleum products

The paper describes the results of studying the composition and properties of pyrocarbon obtained during the pyrolysis of rubber waste. The ability of pyrocarbon to absorb oil and oil products was determined using four developed methods. It has been established that pyrocarbon can find practical use as an adsorbent for the collection and localization of spills of oil and oil products on solid and water surfaces.

  1. Pyshyev S., Lypko Y., Chervinskyy T., Fedevych O., Kułażyński M., Pstrowska K. (2023). Application of tyre derived pyrolysis oil as a fuel component. South African Journal of Chemical Engineering. 43. 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
  2. Luo S.,Feng Y. (2016). The production of fuel oil and combustible gas by catalytic pyrolysis of waste tire using waste heat of blast-furnace slag. Energy Conversion and Management. 136. 27-35. https://doi.org/10.1016/j.sajce.2022.12.003
  3. Campuzano F., Jameel A., Zhang W., EmwasA, Agudelo A., Martinez J., Sarathy S. (2021). On the distillation of waste tire pyrolysis oil: A structural characterization of the derived fractions. Fuel, 290 (3). 345-352. https://doi.org/10.1016/j.fuel.2020.120041
  4. NagurskyyA., Khlibyshyn Y., Grynyshyn O. (2017). Bitumencompositionsforcoldappliedroofingproducts. Chemistry&ChemicalTechnology.11 (2). 226-229. https://doi.org/10.23939/chcht11.02.226
  5. Grynyshyn O.B., Khlibyshyn J.Y., Nagyrskyy A.O., Nagurskyy O.A. (2015). Metody oderzannja bitumiv z zalyshkiv pererobky vazkyh naft. Technologicheskyy audit i rezervy proizvodstva.25(5/4). 45-48.
  6. Mia M., Islam M., Rubel R., Islam M. Fractional distillation & characterization of tire derived pyrolysis oil. Int. J. Eng. Technol. 3. 1-10. https://doi.org/10.19072/ijet.280568
  7. QiaoY., ChenZ., WuX., ZhengY., GuanS., LiJ., YuanZ., LiZ. (2022). Analysis of comprehensive utilization of waste tire pyrolysis char by combustion method. Fuel. 312. 125-136. https://doi.org/10.1016/j.fuel.2021.122996
  8. Ryzhkov S., Rudyuk N., Markina L. (2016). Research of thermal conductivity of the condensed mass of the wholewaste tires and determination of their optimum arrangement in the pyrolysis reactor. Eastern-European Journal Of Enterprise Technologies. 82 (4/5). 12-18. https://doi.org/10.15587/1729-4061.2016.73557
  9. Hrynyshyn K., Skorokhoda V., ChervinskyyT. (2022). Studyon the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chemistry&ChemicalTechnology. 16(1). 159-163. https://doi.org/10.23939/chcht16.01.159
  10. HrynyshynK.O., SkorokhodaV.Y., ChervinskyyT.I. (2021). Sklad I vlastyvosti pirokondensatu pirolizu znoshenyh avtomobilnyh shyn. ChemistryTechnologyandApplicationofSubstances. 4(2). 28-32.
  11. KlimishynaM.T. (2016). Stantaperspektyvyrozvytkutehnologijrererobkyshyntaihvplyvnadovkillja. Technologicheskyy audit i rezervy proizvodstva.32(6/2). 57-63. https://doi.org/10.15587/2312-8372.2016.86810
  12. GlibovytskaN.I., PlaksijL.V. (2019). Efektyvnistpoglynannjanaftysorbentamypryrodnohotashtuchnohopohodzennja. ScientificBulletinofUNFU. 29(6). 76-78. https://doi.org/10.1353/art.2019.0044
  13. ZelenjkoY.V., SorokaM.L., BojchenkoS.V. (2012). Prychynno-naslidkoveobgruntuvannjuadorozrobkynovyhsorbentivdljalikvidacjiavarijnyhitehnologichnyhemisijnaftoproduktiv. NaukoyemniTehnologii. 3(15). 31-35. https://doi.org/10.2298/TEM1202031J