The results of modelling and investigation of external and internal gear-cutting processes using the power skiving method are presented. The principles of constructing a geometric model of undistorted chip formation are described, based on parameters from which cutting forces are calculated. It is found that, under identical conditions, the cutting force is three times greater when internal gears are cut than when external gears are cut. The influence of this force on the machining error is determined by the gear pitch parameter. It is shown that the most rational way to reduce the machining error is to reduce the cutting force by reducing the axial feed rather than by increasing the number of passes.
[1] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, M. Krömer, "Technological and simulative analysis of power skiving", Procedia CIRP. vol. 50, pp. 773-778, 2016. https://doi.org/10.1016/j.procir.2016.05.052
https://doi.org/10.1016/j.procir.2016.05.052
[2] N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", International Journal of Advanced Manufacturing Technology, vol. 100, no. 5-8, pp. 1779-1785, 2019. https://doi.org/10.1007/s00170-018-2790-3
https://doi.org/10.1007/s00170-018-2790-3
[3] H.J. Stadtfeld, "Power skiving of cylindrical gears on different machine platforms", Gear Technology, vol. 1, pp. 52-62, 2014. [online] Available at: https://www.geartechnology.com/ext/resources/issues/0114x/power-skiving.pdf
[4] B. Vargas, M. Zapf, J. Klose, F. Zanger, V.Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP, vol. 82, pp. 455-460. 2019. https://doi.org/10.1016/j.procir.2019.04.039
https://doi.org/10.1016/j.procir.2019.04.039
[5] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp. 520-527, 2020.
https://doi.org/10.1016/j.promfg.2020.05.078
[6] T. Nishikawa, S. Shimada, G. Kobayashi, Z. Ren, N. Sugita, "Using power skiving to increase the efficiency and precision of internal gear cutting", Komatsu Tech. Rep., vol. 64, pp. 1-7, 2018.
[7] T. Bergs, A. Georgoussis A., C. Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357, 2020. https://doi.org/10.1016/j.procir.2020.05.061
https://doi.org/10.1016/j.procir.2020.05.061
[8] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, no. 1, pp. 109-112, 2019. https://doi.org/10.1016/j.cirp.2019.04.085
https://doi.org/10.1016/j.cirp.2019.04.085
[9] D. Spath, A. Hühsam, "Skiving for high-performance machining of periodic structures", CIRP Annals, vol. 51, no. 1, pp. 91-94, 2002. https://doi.org/10.1016/S0007-8506(07)61473-5
https://doi.org/10.1016/S0007-8506(07)61473-5
[10] A. Antoniadis, "Gear skiving-CAD simulation approach", Computer-Aided Design, vol. 44, no. 7, pp. 611-616, 2012. https://doi.org/10.1016/j.cad.2012.02.003
https://doi.org/10.1016/j.cad.2012.02.003
[11] A. Antoniadis, N. Vidakis, N. Bilalis, "A simulation model of gear skiving", Journal of Materials Processing Technology, vol. 146, no. 2, pp. 213-220, 2004. https://doi.org/10.1016/j.jmatprotec.2003.10.019
https://doi.org/10.1016/j.jmatprotec.2003.10.019
[12] I. Hrytsay, V. Stupnytskyy, V. Topchii, "Improved Method of Gear Hobbing Computer Aided Simulation". Archive of mechanical engineering, vol. 66, no. 4. pр. 475-494, 2019. DOI 10.24425/ame.2019.131358
[13] V. Stupnytskyy, "Features of Functionally-Oriented Engineering Technologies in Concurrent Environment", International Journal of Engineering Research & Technology (IJERT), vol. 2 no. 9, pp.1181-1186, 2013