Fractional HCV infection model with adaptive immunity and treatment

Fractional HCV infection model with adaptive immunity and treatment is  suggested and studied in this paper.  The adaptive immunity includes the CTL response and antibodies.  This model contains five ordinary differential equations.  We will start our study by proving the existence, uniqueness, and boundedness of the positive solutions.  The model has free-equilibrium points and other endemic equilibria.  By using Lyapunov functional and LaSalle's invariance principle, we have shown the global stability of these equilibrium points.  Finally, some numerical simulations will be given to validate our theoretical results and show the effect of the fractional derivative order parameter and the other treatment parameters.

  1. Saleem U., Aslam N., Siddique R., Iqbal S., Manan M.  Hepatitis C virus: Its prevalence, risk factors and genotype distribution in Pakistan.  European Journal of Inflammation.  20, 1721727X221144391 (2022).
  2. World Health Organization WHO. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c.
  3. Pandey P., Gómez–Aguilar J. F., Kaabar M. K., Siri Z., Abd Allah A. M.  Mathematical modeling of COVID-19 pandemic in India using Caputo–Fabrizio fractional derivative.  Computers in Biology and Medicine.  145, 105518 (2022).
  4. Kumar P., Baleanu D., Erturk V. S., Inc M., Govindaraj V.  A delayed plant disease model with Caputo fractional derivatives.  Advances in Continuous and Discrete Models.  2022, 111 (2022).
  5. Kumar S., Chauhan R. P., Osman M. S., Mohiuddine S. A.  A study on fractional HIV-AIDs transmission model with awareness effect.  Mathematical Methods in the Applied Sciences. 46 (7), 8334–8348 (2023).
  6. Baleanu D., Hasanabadi M., Vaziri A. M., Jajarmi A.  A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach.  Chaos, Solitons & Fractals.  167, 113078 (2023).
  7. Sweilam N. H., Mohammed Z., Abdel Kareem W.  On HIV Mathematical Model; Numerical Approaches.  Frontiers in Scientific Research and Technology.  5 (1), (2023).
  8. Abdou M. A., Ouahid L., Al Shahrani J. S., Owyed S.  Novel analytical techniques for HIV-1 infection of CD4+ T cells on fractional order in mathematical biology.  Indian Journal of Physics.  97, 2319–2325 (2023).
  9. Slimane I., Nazir G., Nieto J. J., Yaqoob F.  Mathematical analysis of Hepatitis C Virus infection model in the framework of non-local and non-singular kernel fractional derivative.  International Journal of Biomathematics.  16 (01), 2250064 (2023).
  10. Sadki M., Danane J., Allali K.  Hepatitis C virus fractional-order model: mathematical analysis.  Modeling Earth Systems and Environment.  9, 1695–1707 (2023).
  11. Alrabaiah H., Rahman M. U., Mahariq I., Bushnaq S., Arfan, M.  Fractional order analysis of HBV and HCV co-infection under ABC derivative.  Fractals.  30 (01), 2240036 (2022).
  12. Yang Y., Wang J., Zhang S., Zhang T.  Dynamical analysis of a fractional order HCV infection model with acute and chronic and general incidence rate.  Journal of Applied Analysis & Computation.  12 (6), 2283–2298 (2022).
  13. Kolebaje O. T., Vincent O. R., Vincent U. E., McClintock P. V.  Nonlinear growth and mathematical modeling of COVID-19 in some African countries with the Atangana–Baleanu fractional derivative.  Communications in Nonlinear Science and Numerical Simulation.  105, 106076 (2022).
  14. Arshad S., Khalid S., Javed S., Amin N., Nawaz F.  Modeling the impact of the vaccine on the COVID-19 epidemic transmission via fractional derivative.  The European Physical Journal Plus.  137, 802 (2022).
  15. Din A., Li Y., Khan F. M., Khan Z. U., Liu P.  On Analysis of fractional order mathematical model of Hepatitis B using AtanganaвBaleanu Caputo (ABC) derivative.  Fractals.  30 (01), 2240017 (2022).
  16. Kumar P., Baleanu D., Erturk V. S., Inc M., Govindaraj V.  A delayed plant disease model with Caputo fractional derivatives.  Advances in Continuous and Discrete Models.  2022, 11 (2022).
  17. Ait Ichou M., Bachraoui M., Hattaf K., Yousfi N.  Dynamics of a fractional optimal control HBV infection model with capsids and CTL immune response.  Mathematical Modeling and Computing.  10 (1), 239–244 (2023).
  18. El Youssoufi L., Kouidere A., Kada D., Balatif O., Daouia A., Rachik M.  On stability analysis study and strategies for optimal control of a mathematical model of hepatitis HCV with the latent state.  Mathematical Modeling and Computing.  10 (1), 101–118 (2023).
  19. Sadki M., Harroudi S., Allali K.  Dynamical analysis of an HCV model with cell-to-cell transmission and cure rate in the presence of adaptive immunity.  Mathematical Modeling and Computing.  9 (3), 579–593 (2022).
  20. Elkaf M., Allali K.  Fractional derivative model for tumor cells and immune system competition.  Mathematical Modeling and Computing.  10 (2), 288–298 (2023).
  21. Tamilalagan P., Karthiga S., Manivannan P.  Dynamics of fractional order HIV infection model with antibody and cytotoxic T-lymphocyte immune responses.  Journal of Computational and Applied Mathematics.  382, 113064 (2021).
  22. Fikri F. E., Allali K.  HIV Dynamics with a Trilinear Antibody Growth Function and Saturated Infection Rate.  Mathematical and Computational Applications.  27 (5), 85 (2022).
  23. Tabit Y., Hattaf K., Yousfi N.  Dynamics of an HIV pathogenesis model with CTL immune response and two saturated rates.  World Journal of Modelling and Simulation.  10 (3), 215–223 (2014).
  24. Rihan F. A., Abdel Rahman D. H.  Delay differential model for tumour–immune dynamics with HIV infection of CD4+ T-cells.  International Journal of Computer Mathematics.  90 (3), 594–614 (2013).
  25. Ding Y., Ye H.  A fractional-order differential equation model of HIV infection of CD4+ T-cells.  Mathematical and Computer Modelling.  50 (3–4), 386–392 (2009).
  26. Günerhan H., Dutta H., Dokuyucu M. A., Adel W.  Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators.  Chaos, Solitons & Fractals.  139, 110053 (2020).
  27. Cardoso L. C., Camargo R. F., dos Santos F. L. P., Dos Santos J. P. C.  Global stability analysis of a fractional differential system in hepatitis B.  Chaos, Solitons & Fractals.  143, 110619 (2021).
  28. AlShamrani N. H., Alshaikh M. A., Elaiw A. M., Hattaf K.  Dynamics of HIV-1/HTLV-I Co-Infection Model with Humoral Immunity and Cellular Infection.  Viruses. 14 (8), 1719 (2022).
  29. Zhang L., Xu R.  Dynamics analysis of an HIV infection model with latent reservoir, delayed CTL immune response and immune impairment.  Nonlinear Analysis: Modelling and Control.  28 (1), 1–19 (2023).
  30. Allali K., Danane J., Kuang Y.  Global analysis for an HIV infection model with CTL immune response and infected cells in eclipse phase.  Applied Sciences.  7 (8), 861 (2017).
  31. Yang Y., Zou L., Ruan S.  Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Mathematical Biosciences.  270 (B), 183–191 (2015).
  32. Liu Q.  Analysis of a stochastic HIV model with cell-to-cell transmission and Ornstein–Uhlenbeck process.  Journal of Mathematical Physics.  64 (1), 012702 (2023).
  33. Wu P., Din A., Munir T., Malik M. Y., Alqahtani A. S.  Local and global Hopf bifurcation analysis of an age-infection HIV dynamics model with cell-to-cell transmission.  Waves in Random and Complex Media. 1–16 (2022).
  34. Elaiw A. M., Alshaikh M. A.  Global stability of discrete pathogen infection model with humoral immunity and cell-to-cell transmission.  Chaos, Solitons & Fractals.  130, 109458 (2020).
  35. Dhar M., Samaddar S., Bhattacharya P.  Modeling the cell-to-cell transmission dynamics of viral infection under the exposure of non-cytolytic cure.  Journal of Applied Mathematics and Computing.  65, 885–911 (2021).
  36. Wang X., Tan Y., Cai Y., Wang K., Wang W.  Dynamics of a stochastic HBV infection model with cell-to-cell transmission and immune response.  Mathematical Biosciences and Engineering.  18 (1), 616–642 (2021).
  37. Sigal A., Kim J. T., Balazs A. B., Dekel E., Mayo A., Milo R., Baltimore D.  Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy.  Nature.  477 (7362), 95–98 (2011).
  38. Yaagoub Z., Allali K.  Fractional HBV infection model with both cell-to-cell and virus-to-cell transmissions and adaptive immunity.  Chaos, Solitons & Fractals.  165 (1), 112855 (2022).
  39. Elkaf, M., Meskaf, A., Allali, K. Mathematical Modeling of HBV Infection with DNA-Containing Capsids and Therapy.  Nonlinear Dynamics and Complexity: Mathematical Modelling of Real-World Problems. 413–427 (2022).
  40. Allali K., Tabit Y., Harroudi S.  On HIV model with adaptive immune response, two saturated rates and therapy.  Mathematical Modelling of Natural Phenomena.  12 (5), 1–14 (2017).
  41. Yaagoub Z., Danane J., Allali K.  Global Stability Analysis of Two-Strain SEIR Epidemic Model with Quarantine Strategy.  Nonlinear Dynamics and Complexity: Mathematical Modelling of Real-World Problems. 469–493 (2022).
  42. El Baz O., Ait Ichou M., Laarabi H., Rachik M.  Stability analysis of a fractional model for the transmissionof the cochineal.  Mathematical Modeling and Computing.  10 (2), 379–386 (2023).
  43. Bounkaicha C., Allali K., Tabit Y., Danane J.  Global dynamic of spatio-temporal fractional order SEIR model.  Mathematical Modeling and Computing.  10 (2), 299–310 (2023).
  44. Khajji B., Boujallal L., Elhia M., Balatif O., Rachik M.  A fractional-order model for drinking alcohol behaviour leading to road accidents and violence.  Mathematical Modeling and Computing.  9 (3), 501–518 (2022).
  45. Yaagoub Z., Allali K.  Fractional HBV infection model with both cell-to-cell and virus-to-cell transmissions and adaptive immunity.  Chaos, Solitons & Fractals.  165 (1), 112855 (2022).
  46. Danane J., Allali K., Hammouch Z.  Mathematical analysis of a fractional differential model of HBV infection with antibody immune response.  Chaos, Solitons & Fractals.  136, 109787 (2020).
  47. Akdim K., Ez-Zetouni A., Zahid M.  The influence of awareness campaigns on the spread of an infectious disease: a qualitative analysis of a fractional epidemic model.  Modeling Earth Systems and Environment.  8, 1311–1319 (2022).