Графен був вперше отриманий на початку 21-го століття, і з того часу було розроблено різноманітні методи для його синтезу. Ця різноманітність пояснюється природньою шаровою структурою графіту. Велика кількість методів ґрунтується на ідеї розділення шарів графіту. Вони вважаються відносно дешевими, продуктивними та доступними практично в усіх лабораторіях.
Інша група методів синтезу графену базується на концепції створення графенових листків з окремих атомів вуглецю. Ці методи є технологічно складнішими і вимагають відповідного спеціалізованого обладнання.
Завдяки широкому спектру методів синтезу графену та їх доступності, дослідники з усього світу можуть проводити експерименти з цим унікальним матеріалом у різних наукових галузях. Це робить графен надзвичайно перспективним об'єктом для подальших наукових досліджень.
- KS Novoselov, AK Geim, SV Morozov, D. Jiang, Y. Zhang, SV Dubonos, IV Grigorieva, and AA Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
https://doi.org/10.1126/science.1102896 - AL Vázquez de Parga, F. Calleja, B. Borca, MCG Passeggi Jr, JJ Hinarejos, F. Guinea, et al., "Periodically rippled graphene: Growth and spatially resolved electronic structure," Physical Review Letters, vol. 100, pp. 056807, 2008.
https://doi.org/10.1103/PhysRevLett.100.056807 - RM Obodo, I. Ahmad, and FI Ezema, "Introductory Chapter: Graphene and Its Applications," Graphene and Its Applications, 1st ed., IntechOpen, Sep. 11, 2019.
- AP Aranga Raju, "Production and Applications of Graphene and Its Composites," Ph.D. dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences, 2015.
- SS Shams, R. Zhang, and J. Zhu, “Graphene synthesis: a Review,” Mater. Science-Poland, vol. 33, no. 3, pp. 566–578, Sept. 2015.
https://doi.org/10.1515/msp-2015-0079 - A. Adetayo and D. Runsewe, "Synthesis and Fabrication of Graphene and Graphene Oxide: A Review," Open Journal of Composite Materials, vol. 9, pp. 207-229, 2019.
https://doi.org/10.4236/ojcm.2019.92012 - D. Zhan, L. Sun, ZH Ni, L. Liu, XF Fan, and Y. Wang, “Adv. Funct. Mater., 20, 3504, 2010.”
https://doi.org/10.1002/adfm.201000641 - LM Viculis, JJ Mack, OM Mayer, HT Hahn, and RB Kaner, "Intercalation and Exfoliation Routes to Graphite Nanoplatelets," Journal of Materials Chemistry, vol. 15, pp. 974-978, 2005.
https://doi.org/10.1039/b413029d - K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, "Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics," ACS Nano, vol. 7, no. 4, pp. 3598-3606, Apr. 2013.
https://doi.org/10.1021/nn400576v - J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids," ACS Nano, vol. 3, no. 8, pp. 2367-2375, Aug. 2009."
https://doi.org/10.1021/nn900546b - Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite", Nat Nanotechnol, vol. 3, no. 9, pp. 563-568, Sep. 2008.
https://doi.org/10.1038/nnano.2008.215 - B. Jayasena and S. Subbiah, "A novel mechanical cleavage method for synthesizing few-layer graphenes," Nano Express, vol. 6, Article number: 95, Jan. 19, 2011."
https://doi.org/10.1186/1556-276X-6-95 - AV Tyurnina, I. Tzanakis, J. Morton, J. Mi, K. Porfyrakis, BM Maciejewska, N. Grobert, and DG Eskin, "Ultrasonic exfoliation of graphene in water: A key parameter study," Carbon, vol . 168, pp. 737-747, 2020.
https://doi.org/10.1016/j.carbon.2020.06.029 - G. Mittal, V. Dhand, K.Y. Rhee, S.-J. Park, and W.R. Lee, "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites," Journal of Industrial and Engineering Chemistry, vol. 21, pp. 11-25, 2015.
https://doi.org/10.1016/j.jiec.2014.03.022 - D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S.B. Bon, M. Piccinini, J. Illescas, A. Mariani, "High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid," J. Mater. Chem., vol. 21, no. 10, pp. 3428, 2011..
https://doi.org/10.1039/C0JM02461A - M. Choucair, P. Thordarson, J. A. Stride, "Gram-scale production of graphene based on solvothermal synthesis and sonication," Nat Nanotechnol, vol. 4, no. 1, pp. 30-33, Jan. 2009.
https://doi.org/10.1038/nnano.2008.365 - M. Terrones, "Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons," ACS Nano, vol. 4, no. 4, pp. 1775-1781, Apr. 2010.
https://doi.org/10.1021/nn1006607 - D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, no. 7240, pp. 872-876, Apr. 16, 2009.
https://doi.org/10.1038/nature07872 - L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, no. 7240, Apr. 16, 2009.
https://doi.org/10.1038/nature07919 - MSA Bhuyan, MN Uddin, MM Islam, FA Bipasha, and SS Hossain, "Synthesis of Graphene", International Nano Letters, vol. 6, pp. 65-83, 2016.
https://doi.org/10.1007/s40089-015-0176-1 - S. Das, P. Sudhagar, YS Kang, and W. Choi, "Synthesis and Characterization of Graphene," in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85-131, 2015.
https://doi.org/10.1002/9781118980989.ch3 - A. Chakrabarti, J. Lu, J. C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, and N. S. Hosmane, "Conversion of carbon dioxide to few-layer graphene," Journal of Materials Chemistry, Issue 26, 2011.
https://doi.org/10.1039/c1jm11227a - "Schematic illustration of CVD method of graphene synthesis. (2019).", https://www.researchgate.net/figure/Schematic-illustration-of-CVD-method....
- X. Zhang, J. Qiu, J. Tan, D. Zhang, L. Wu, Y. Qiao, G. Wang, J. Wu, KWK Yeung, and X. Liu, "In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light", Carbon, vol. 192, pp. 209-218, June 15, 2022.
https://doi.org/10.1016/j.carbon.2022.02.050 - X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science , vol. 324, pp. 1312–1314, 2009.
https://doi.org/10.1126/science.1171245 - N. Shang, P. Papakonstantinou, and M. McMullan, "Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes", Advanced Functional Materials, vol. 18, no. 21, pp. 3506-3514, 2008.
https://doi.org/10.1002/adfm.200800951 - S. Das, P. Sudhagar, YS Kang, and W. Choi, "Synthesis and Characterization of Graphene," in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds. , John Wiley & Sons, Inc., Hoboken, NJ, pp. 85-131, 2015.
https://doi.org/10.1002/9781118980989.ch3 - NG Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, SS Dhesi, and H. Marchetto, "Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films", with Sharp Edge Planes," Advanced Functional Materials, vol. 18, No. 21, pp. 3506-3514, November 2008.
https://doi.org/10.1002/adfm.200800951 - J. Lahiri, TS Miller, AJ Ross, L. Adamska, II Oleynik, and M. Batzill, "Graphene growth and stability at nickel surfaces," New J Phys, vol. 13, 2011.
https://doi.org/10.1088/1367-2630/13/2/025001 - "Handbook of Crystal Growth. Thin Films and Epitaxy: Materials, Processes, and Technology. Volume III, Part B," 1346 Pages, 2016.
- A.N. Obraztsov, E.A. Obraztsova, AV Tyurnina, and AA Zolotukhin, "Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness," Carbon, vol 45, pp. 2017-2021, 2007.
https://doi.org/10.1016/j.carbon.2007.05.028 - Rasool HI, Song EB, Allen MJ, Wassei JK, Kaner RB, Wang KL, et al. Continuity of graphene on polycrystalline copper. Nano Lett 2010;11:251–6.
https://doi.org/10.1021/nl1036403