У даній роботі розглядається проблема впливу точкових дефектів на явища переносу в кристалах CdSexTe1-x (x=0,35). Вперше проведено розрахунок електронного спектру, хвильової функції та потенціальної енергії електрона в зразках CdSe0.35Te0.65 при заданій температурі. За допомогою методу суперкомірки встановлено типи точкових дефектів, а також температурну залежність їх енергій іонізації в досліджуваному інтервалі температур. Виявлено температурні залежності констант деформації оптичного та акустичного потенціалів розсіяння, а також розраховано температурні залежності констант розсіяння електронів на різних кристалічних точкових дефектах. На основі моделей розсіювання на короткодіючому потенціалі знайдено температурні залежності рухливості та холлівського фактора електронів.
- I. Sankin and D. Krasikov, "Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers", Phys. Status Solidi A, vol. 215, p.1800887-1-11, 2019.
https://doi.org/10.1002/pssa.201800887 - J.H. Yang, et al., “First-principles study of roles of Cu and Cl in polycrystalline CdTe”, J. Appl. Phys., vol. 119, p. 045104-1-17, 2016.
https://doi.org/10.1063/1.4940722 - D. Krasikov, et al., “First-principles-based analysis of the influence of Cu on CdTe electronic properties”, Thin Solid Films, vol. 535, pp. 322-325, 2013.
https://doi.org/10.1016/j.tsf.2012.10.027 - Ji-Hui Yang, et al., “Review on first-principles study of defect properties of CdTe as a solar cell absor-ber”, Semicond. Sci.Technol., vol. 31 p. 083002-1-22, 2016.
https://doi.org/10.1088/0268-1242/31/8/083002 - Ji-Hui Yang, et al., “Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe”, Phys. Rev. B, vol. 90, p. 245202-1-5, 2014.
https://doi.org/10.1103/PhysRevB.90.245202 - V. Lordi, “Point defects in Cd(Zn)Te and TlBr: Theory”, J. Cryst. Growth, vol. 379, p. 84-92, 2013.
https://doi.org/10.1016/j.jcrysgro.2013.03.003 - K. Biswas and M.H. Du, “What causes high resistivity in CdTe”, New J. Phys., vol. 14, p. 063020-1-20, 2012.
https://doi.org/10.1088/1367-2630/14/6/063020 - I. Sankin and D. Krasikov, “Defect interactions and the role of complexes in CdTe solar cell absorber”, J. Mater. Chem. A, vol. 5, pp. 3503-3515, 2017.
https://doi.org/10.1039/C6TA09155E - A. Lindström et al., “High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies”, J. Phys. D: Appl. Phys., vol. 49, p. 035101-1-12, 2016.
https://doi.org/10.1088/0022-3727/49/3/035101 - A. Lindström, et al., “Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles”, AIP Adv., vol. 5, p. 087101-1 11, 2015.
https://doi.org/10.1063/1.4928189 - D.N. Krasikov, et al., “Theoretical analysis of non-radiative multiphonon recombination activity of intrinsic defects in CdTe”, J. Appl. Phys., vol. 119, p. 085706-1-10, 2016.
https://doi.org/10.1063/1.4942529 - J.H. Yang, et al., “Non-radiative carrier recom-bination enhanced by two-level process: a first-prin-ciples study”, Sci. Rep., vol. 6, p. 21712-1-10, 2016.
https://doi.org/10.1038/srep21712 - O.P. Malyk, “Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1 £ x £ 0.5) solid solution: ab initio approach”, J. Electron. Mater., vol. 49, pp. 3080-3088, 2020.
https://doi.org/10.1007/s11664-020-07982-6 - X. Gonze et al., “Recent developments in the ABINIT software package”, Comput. Phys. Commun., vol. 205, pp. 106-131, 2016.
- O.P. Malyk, “The local inelastic electron–polar opti-cal phonon interaction in mercury telluride”, Comput. Mater. Sci., vol. 33, pp.153-156, 2005.
https://doi.org/10.1016/j.commatsci.2004.12.052 - O.P. Malyk, “Charge carrier scattering on the short-range potential of the crystal lattice defects in ZnCdTe, ZnHgSe and ZnHgTe”, Physica B: Con-densed Matter, vol. 404, 5022-5024, 2009.
https://doi.org/10.1016/j.physb.2009.08.216 - O.P. Malyk, “Electron scattering on the short-range potential of the crystallattice defects in ZnO”, Can. J. Phys., vol. 92, pp. 1372-1379, 2014.
https://doi.org/10.1139/cjp-2013-0075 - O. Malyk and S. Syrotyuk, “New scheme for calcu-lating the kinetic coefficients in CdTe based on first-principle wave function”, Comput. Mater. Sci., vol. 139, pp. 387-394, 2017.
https://doi.org/10.1016/j.commatsci.2017.07.039 - O.P. Malyk and S.V. Syrotyuk, “The local electron in-teraction with point defects in sphalerite zinc se-lenide: calculation from the first principles”, J. Electron. Mater., vol. 47, pp. 4212-4218, 2018.
https://doi.org/10.1007/s11664-018-6068-1 - J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett., vol. 77, pp. 3865-3868 (1996).
https://doi.org/10.1103/PhysRevLett.77.3865 - P. Novák, et al, “Exact exchange for correlated electrons”, Phys. Status Solidi B, vol. 243, pp. 563-572, 2006.
https://doi.org/10.1002/pssb.200541371 - G.L. Hansen, J.L. Schmit, and T.N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe”, J. Appl. Phys., vol. 53, pp. 7099- 7101, 1982.
https://doi.org/10.1063/1.330018 - R. Passler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors”, Phys. Status Solidi B, vol. 216, pp. 975-1007, 1999.
https://doi.org/10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N - A. Haug, “Zur statischen Näherung des Festkörper-problems”, Z. Physik, vol. 175, pp. 166-171, 1963.
https://doi.org/10.1007/BF01375197 - C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978.
https://doi.org/10.1007/978-1-4612-6333-3 - N.A.W. Holzwarth, A.R. Tackett, and G.E. Matthews, “A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions”, Computer Phys. Comm., vol. 135, pp. 329-347, 2001.
https://doi.org/10.1016/S0010-4655(00)00244-7 - A.R. Tackett, N.A.W. Holzwarth, and G.E. Matthews, “A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis”, Computer Phys. Comm., vol. 135, pp. 348-376, 2001.
https://doi.org/10.1016/S0010-4655(00)00241-1 - O.P. Malyk, “Nonelastic charge carrier scattering in mercury telluride”, J. Alloys Compd., vol. 371/1-2 pp. 146-149, 2004.
https://doi.org/10.1016/j.jallcom.2003.07.033 - N. Muthukumarasamy, et al., “Electrical conduction studies of hot wall deposited CdSexTe1−x thin films”, Sol. Energy Mater. Sol. Cells , vol. 92, pp. 851-856, 2008.
https://doi.org/10.1016/j.solmat.2008.02.005