Electron interaction with point defects in CdSe0.35Te0.65: joining of ab initio approach with short-range principle

This study examines the problem of influence of point defects on transport phenomena in CdSexTe1-x (x=0.35) crystals. For the first time, the calculation of the electronic spectrum, wave function and potential energy of the electron in CdSe0.35Te0.65 samples at a prearranged   temperature was carried out. Using the supercell method, the types of point defects were established, as well as the temperature dependence of their ionization energies in the studied temperature range. The temperature dependences of the deformation constants of the optical and acoustic scattering potentials were detected and also calculated the dependences on temperature of electron scattering constants on different crystal point defects. Temperature dependences of the mobility and Hall factor of electrons were found based on the scattering models on the short-range potential.

  1. I. Sankin and D. Krasikov, "Kinetic simulations of Cu doping in chlorinated CdSeTe PV absorbers", Phys. Status Solidi A, vol. 215, p.1800887-1-11, 2019.
    https://doi.org/10.1002/pssa.201800887
  2. J.H. Yang, et al., “First-principles study of roles of Cu and Cl in polycrystalline CdTe”, J. Appl. Phys., vol. 119, p. 045104-1-17, 2016. 
    https://doi.org/10.1063/1.4940722
  3. D. Krasikov, et al., “First-principles-based analysis of the influence of Cu on CdTe electronic properties”, Thin Solid Films, vol. 535, pp. 322-325, 2013.
    https://doi.org/10.1016/j.tsf.2012.10.027
  4. Ji-Hui Yang, et al., “Review on first-principles study of defect properties of CdTe as a solar cell absor-ber”, Semicond. Sci.Technol., vol. 31 p. 083002-1-22, 2016.
    https://doi.org/10.1088/0268-1242/31/8/083002
  5. Ji-Hui Yang, et al., “Tuning the Fermi level beyond the equilibrium doping limit through quenching: The case of CdTe”,  Phys. Rev. B, vol. 90, p. 245202-1-5, 2014.
    https://doi.org/10.1103/PhysRevB.90.245202
  6. V. Lordi, “Point defects in Cd(Zn)Te and TlBr: Theory”,  J. Cryst. Growth, vol. 379, p. 84-92, 2013.
    https://doi.org/10.1016/j.jcrysgro.2013.03.003
  7.  K. Biswas and M.H. Du, “What causes high resistivity in CdTe”,  New J. Phys., vol. 14, p. 063020-1-20, 2012.
    https://doi.org/10.1088/1367-2630/14/6/063020
  8. I. Sankin and D. Krasikov, “Defect interactions and   the role of complexes in CdTe solar cell absorber”, J. Mater. Chem. A, vol. 5, pp. 3503-3515, 2017.
    https://doi.org/10.1039/C6TA09155E
  9. A. Lindström et al., “High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies”, J. Phys. D: Appl. Phys., vol. 49, p. 035101-1-12, 2016.
    https://doi.org/10.1088/0022-3727/49/3/035101
  10. A. Lindström, et al., “Cl-doping of Te-rich CdTe: Complex formation, self-compensation and self-purification from first principles”, AIP Adv., vol. 5, p. 087101-1 11, 2015.
    https://doi.org/10.1063/1.4928189
  11. D.N. Krasikov, et al., “Theoretical analysis of non-radiative multiphonon recombination activity of intrinsic defects in CdTe”, J. Appl. Phys., vol. 119, p. 085706-1-10, 2016.
    https://doi.org/10.1063/1.4942529
  12. J.H. Yang, et al., “Non-radiative carrier recom-bination enhanced by two-level process: a first-prin-ciples study”, Sci. Rep., vol. 6, p. 21712-1-10, 2016.
    https://doi.org/10.1038/srep21712
  13. O.P. Malyk, “Prediction of the kinetic properties of sphalerite CdSexTe1-x(0.1 £ x £ 0.5) solid solution: ab initio approach”, J. Electron. Mater., vol. 49, pp. 3080-3088, 2020.
    https://doi.org/10.1007/s11664-020-07982-6
  14. X. Gonze  et al., “Recent developments in the ABINIT software package”, Comput. Phys. Commun., vol. 205, pp. 106-131, 2016.
  15. O.P. Malyk, “The local inelastic electron–polar opti-cal phonon interaction in mercury telluride”, Comput. Mater. Sci., vol. 33, pp.153-156, 2005.
    https://doi.org/10.1016/j.commatsci.2004.12.052
  16. O.P. Malyk, “Charge carrier scattering on the short-range potential of the crystal lattice defects in ZnCdTe, ZnHgSe and ZnHgTe”, Physica B: Con-densed Matter, vol. 404, 5022-5024, 2009.
    https://doi.org/10.1016/j.physb.2009.08.216
  17. O.P. Malyk, “Electron scattering on the short-range potential of the crystallattice defects in ZnO”, Can. J. Phys., vol. 92, pp. 1372-1379, 2014.
    https://doi.org/10.1139/cjp-2013-0075
  18. O. Malyk and S. Syrotyuk, “New scheme for calcu-lating the kinetic coefficients in CdTe based on first-principle wave function”, Comput. Mater. Sci., vol. 139, pp. 387-394, 2017.
    https://doi.org/10.1016/j.commatsci.2017.07.039
  19. O.P. Malyk and S.V. Syrotyuk, “The local electron in-teraction with point defects in sphalerite zinc se-lenide: calculation from the first principles”, J. Electron. Mater., vol. 47, pp. 4212-4218, 2018.
    https://doi.org/10.1007/s11664-018-6068-1
  20. J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett., vol. 77, pp. 3865-3868 (1996).
    https://doi.org/10.1103/PhysRevLett.77.3865
  21. P. Novák, et al, “Exact exchange for correlated electrons”, Phys. Status Solidi B, vol. 243, pp. 563-572, 2006.
    https://doi.org/10.1002/pssb.200541371
  22. G.L. Hansen, J.L. Schmit, and T.N. Casselman, “Energy gap versus alloy composition and temperature in Hg1-xCdxTe”, J. Appl. Phys., vol. 53, pp. 7099- 7101, 1982.
    https://doi.org/10.1063/1.330018
  23. R. Passler, “Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors”, Phys. Status Solidi B, vol. 216, pp. 975-1007, 1999.
    https://doi.org/10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N
  24. A. Haug, “Zur statischen Näherung des Festkörper-problems”, Z. Physik, vol. 175, pp. 166-171, 1963.
    https://doi.org/10.1007/BF01375197
  25. C. de Boor, A Practical Guide to Splines, New York: Springer-Verlag, 1978.
    https://doi.org/10.1007/978-1-4612-6333-3
  26. N.A.W. Holzwarth, A.R. Tackett, and G.E. Matthews, “A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions”, Computer Phys. Comm., vol. 135, pp. 329-347, 2001.
    https://doi.org/10.1016/S0010-4655(00)00244-7
  27. A.R. Tackett, N.A.W. Holzwarth, and G.E. Matthews, “A Projector Augmented Wave (PAW) code for electronic structure calculations, Part II: pwpaw for periodic solids in a plane wave basis”, Computer Phys. Comm., vol. 135, pp. 348-376, 2001.
    https://doi.org/10.1016/S0010-4655(00)00241-1
  28. O.P. Malyk, “Nonelastic charge carrier scattering in mercury telluride”, J. Alloys Compd., vol. 371/1-2 pp. 146-149, 2004.
    https://doi.org/10.1016/j.jallcom.2003.07.033
  29. N. Muthukumarasamy, et al., “Electrical conduction studies of hot wall deposited CdSexTe1−x thin films”, Sol. Energy Mater. Sol. Cells , vol. 92, pp. 851-856, 2008.
    https://doi.org/10.1016/j.solmat.2008.02.005