Сhemical synthesis of solid solutions of mercury sulfide-selenide films in the presence of sodium tartrate

Solid solutions films of mercury sulfide-selenide (HgS1–xSex) were synthesized on glass substrates by the chemical bath deposition method. Theoretical calculations of the boundary conditions for the HgS and HgSe formation in the mercury-tartrate-thiourea-selenosulfate system were made. The boundary conditions of HgS1–xSex were defined by the overlap area between the constructed HgS and HgSe formation zones. The X-ray diffraction and elemental analysis showed that the obtained films are single-phase and consist of HgS1–xSex substitutional solid solutions in zincblende modification. The effect of Na2SeSO3 concentration on the degree of S-Se substitution, as well as on the optical and morphological properties of HgS1–xSex films, was investigated.

1. Mane, R. S., & Lokhande, C. D. (2000). Chemical deposition method for metal chalcogenide thin films. Materials Chemistry and Physics, 65, 1-31. DOI: https://doi.org/10.1016/s0254-0584(00)00217-0
https://doi.org/10.1016/S0254-0584(00)00217-0
2. Pawar, S. M., Pawar, B. S., Kim, J. H., Joo, O.-S., & Lokhande, C. D. (2011). Recent status of chemical bath deposited metal chalcogenide and Metal Oxide Thin Films. Current Applied Physics, 11, 117-161. DOI: https://doi.org/10.1016/j.cap.2010.07.007
https://doi.org/10.1016/j.cap.2010.07.007
3. Deposition of metal sulphide thin films by chemical bath deposition technique: Review. (2021). International Journal of Thin Films Science and Technology, 10, 45-57. DOI: https://doi.org/10.18576/ijtfst/100108
https://doi.org/10.18576/ijtfst/100108
4. Kraus, W., & Nolze, G. (1996). Powder cell - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301-303. DOI: https://doi.org/10.1107/s0021889895014920
https://doi.org/10.1107/S0021889895014920
5. Raval, A. V., Shaikh, I. A., Jain, V. M., Shastri, N. M., Patel, P. B., Saini, L. K., & Shah, D. V. (2020). Deposition and characterization of indium selenide thin films for opto-electronic devices. Journal of Nano- and Electronic Physics, 12, 02010. DOI: https://doi.org/10.21272/jnep.12(2).02010
https://doi.org/10.21272/jnep.12(2).02010
6. Shapoval, P., Sozanskyi, M., Yatchyshyn, I., Kulyk, B., Shpotyuk, M., & Gladyshevskii, R. (2016). The effect of different complexing agents on the properties of zinc sulfide thin films deposited from aqueous solutions. Chemistry & Chemical Technology, 10, 317-323. DOI: https://doi.org/10.23939/chcht10.03.317
https://doi.org/10.23939/chcht10.03.317
7. Sozanskyi, M. A., Stadnik, V. E., Chaykivska, R. T., Shapoval, P. Y., Yatchyshyn, Y. Y., & Vasylechko, L. O. (2018). The effect of different complexing agents on the properties of mercury selenide films deposited from aqueous solutions. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 69-76.
8. Zheng, Z., Zhang, M., Xiao, Y., Wei, L., & Li, C. (2017). Effect of CYS, GSH, and pH on Mercury release from Tibetan medicine Zuotai, β-HgS, and α-HgS in artificial gastrointestinal juices. Biological Trace Element Research, 184, 536-545. DOI: https://doi.org/10.1007/s12011-017-1185-x
https://doi.org/10.1007/s12011-017-1185-x
9. Donald R. B. (2004). Public Data Resource: NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows. National Institute of Standards and Technology. Retrieved from https://doi.org/10.18434/M32154
10. Arencibia, A., Aguado, J., & Arsuaga, J. M. (2010). Regeneration of thiol-functionalized mesostructured silica adsorbents of Mercury. Applied Surface Science, 256, 5453-5457. DOI: https://doi.org/10.1016/j.apsusc.2009.12.139
https://doi.org/10.1016/j.apsusc.2009.12.139
11. Liu, Z., Peng, B., Chai, L., Liu, H., Yang, S., Yang, B., Xiang, K., Liu, C., & Wang, D. (2017). Selective removal of elemental mercury from high-concentration SO2 flue gas by thiourea solution and investigation of mechanism. Industrial & Engineering Chemistry Research, 56, 4281-4287. DOI: https://doi.org/10.1021/acs.iecr.7b00044
https://doi.org/10.1021/acs.iecr.7b00044
12. Thiodjio Sendja, B., Tchana Kamgne, D., Aquilanti, G., Olivi, L., & Plaisier, J. R. (2018). Low-range thermal investigation of Zincblende-Type ZnS by combined extended X-ray absorption fine structure and X-ray diffraction techniques. Physica B: Condensed Matter, 545, 481-490. DOI: https://doi.org/10.1016/j.physb.2018.06.005
https://doi.org/10.1016/j.physb.2018.06.005
13. Moreno-Close, E. R., Martínez-Benítez, A., Meléndez-Lira, M., Ceja-Andrade, I., Chávez-Chávez, A., Pérez-Centeno, A., Quiñones-Galván, J. G., & Santana-Aranda, M. A. (2020). Mercury sulfide thin film deposition using [HgI4]2− complex ions. Journal of Materials Science: Materials in Electronics, 31, 4611-4617. https://doi.org/10.1007/s10854-020-03013-6
https://doi.org/10.1007/s10854-020-03013-6
14. Sozanskyi, M. A., Siryk, K. M., Shapoval, P. Yo., Huminilovych, R. R., Stadnik, V. E., & Laruk, M. M. (2023). Chemical deposition of multilayer HgS Films. Journal of Nano- and Electronic Physics, 15, 06010. DOI: https://doi.org/10.21272/jnep.15(6).06010
https://doi.org/10.21272/jnep.15(6).06010