Нові тверді розчини заміщення стронцію (Sr) плюмбумом (Pb) у структурі апатитів

2023;
: cc. 719 - 728
1
Al-Karkh University of Science, College of Science, Department of Microbiology

Заміщення стронцію на плюмбум у $\mathrm{Pb}_{(8-x)} \mathrm{Sr}_x \mathrm{Na}_2\left(\mathrm{PO}_4\right)_6$ проаналізовано з використанням XRD, SEM та методу Рітвельда. Усі зразки були синтезовані з використанням керамічних і напівкерамічних технологій. Чистий апатит утворювався в складі від $x=0.00$ до $x=0.00$. Результати свідчать про те, що зібрані склади зразків узгоджуються з розрахованими величинами.

  1. Ptáček P.; Apatites and their Synthetic Analogues – Synthesis, Structure, Properties and Applications; IntechOpen, 2016. https://doi.org/10.5772/62212
  2. Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542–563. https://doi.org/10.3390/ceramics4040039
  3. Al-Eesaa, N.A.; Johal, A.; Hill, R.G.; Wong, F.S.L. Fluoride Containing Bioactive Glass Composite for Orthodontic Adhesives – Apatite Formation Properties. Dent. Mater. 2018, 34, 1127–1133. https://doi.org/10.1016/j.dental.2018.04.009
  4. Nur, A.; Budiman, A.W.; Jumari, A.; Nazriati, N.; Fajaroh, F. Electrosynthesis of Ni-Co/Hydroxyapatite as a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions. Chem. Chem. Technol. 2021, 15, 389–394. https://doi.org/10.23939/chcht15.03.389
  5. Abdul Jabar, M.A.B.; Ignatov, A.V. New Synthesis of Solid-Solution Lead Hydroxyapatite (PbHAP) by Ceramic and Semi-Ceramic Methods. J. Chem. Soc. Pak. 2020, 42, 363–268. https://jcsp.org.pk/issueDetail.aspx?aid=9c56ea37-f765-416d-b62f-9ba5f29...
  6. Abdel-Aal, E.A.; Abdel-Ghafar, H.M.; El-Sayed, D.; Ewais, E.M. Synthesis of High Hardness Hydroxyapatite Particles Using Surfactant Assisted Hydrothermal Method. Int. J. Innov. Sci. Technol. 2022, 2, 35–50. https://doi.org/10.21608/IJMTI.2022.115060.1044
  7. Parajuli, K.; Malla, K.P.; Panchen, N.; Ganga, G.C.; Adhikari, R. Isolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization. Chem. Chem. Technol. 2022, 16, 133–141. https://doi.org/10.23939/chcht16.01.133
  8. Abdul Halim, N.A.; Hussein, M.Z.; Kandar, M.K. Nanomaterials-Upconverted Hydroxyapatite for Bone Tissue Engineering and a Platform for Drug Delivery. Int. J. Nanomedicine 2021, 16, 6477–6496. https://doi.org/10.2147/IJN.S298936
  9. Combes, C.; Cazalbou, S.; Rey, C. Apatite Biominerals. Minerals 2016, 6, 34. https://doi.org/10.3390/min6020034
  10. Deng, S.; Lin, Z.; Tang, H.; Ullah, S.; Bi, Y. Rapid Synthesis of Hydroxyapatite Nanoparticles via a Novel Approach in the Dual-Frequency Ultrasonic System for Specific Biomedical Application. J. Mater. Res. 2019, 34, 2796–2806. https://doi.org/10.1557/jmr.2019.119
  11. Iconaru, S.L.; Motelica-Heino, M.; Guegan, R.; Beuran, M.; Costescu, A.; Predoi, D. Adsorption of Pb (II) Ions onto Hydroxyapatite Nanopowders in Aqueous Solutions. J. Mater. 2018, 11, 2204–2221. https://doi.org/10.3390/ma11112204
  12. Xin, Y.; Shirai, T. Noble-Metal-Free Hydroxyapatite Activated by Facile Mechanochemical Treatment Towards Highly-Efficient Catalytic Oxidation of Volatile Organic Compound. Sci Rep 2021, 11, 7512. https://doi.org/10.1038/s41598-021-86992-8
  13. Ebadipour, N.; Paul, S.; Katryniok, B.; Dumeignil, F. Calcium Hydroxyapatite: A Highly Stable and Selective Solid Catalyst for Glycerol Polymerization. Catalysts 2021, 11, 1247. https://doi.org/10.3390/catal11101247
  14. Antao, S.M.; Dhaliwal, I. Lead Apatites: Structural Variations among Pb5(BO4)3Cl with B = P (Pyromorphite), As (Mimetite) and V (Vanadinite). J Synchrotron Radiat 2018, 25, 214–221. https://doi.org/10.1107/S1600577517014217
  15. Khademolhosseini, M.R.; Mobasherpour, I.; Ghahreman, D. Lead Adsorption by Nano-Hydroxyapatite Granules in a Fixed-Bed Column. Chem. Chem. Technol. 2018, 12, 372–378. https://doi.org/10.23939/chcht12.03.372
  16. Bratychak Jr, M.; Chopyk, N.; Zemke, V. Effect of Hydroxyapatite on the Glue Line Strength of the Compositions Containing Polyvinylpirrolidone. Chem. Chem. Technol. 2016, 10, 473–478. https://doi.org/10.23939/chcht10.04.473
  17. Zhu, Y.; Huang, B.; Zhu, Z.; Liu, H.; Huang, Y.; Zhao, X.; Liang, M. Characterization, Dissolution and Solubility of the Hydroxypyromorphite–Hydroxyapatite Solid Solution [(PbxCa1−x)5(PO4)3OH] at 25 °C and pH 2-9. Geochemical Trans. 2016, 17, 2. https://doi.org/10.1186/s12932-016-0034-8
  18. Giera, A.; Manecki, M.; Bajda, T.; Rakovan, J.; Kwaśniak-Kominek, M.; Marchlewski, T. Arsenate Substitution in Lead Hydroxyl Apatites: A Raman Spectroscopic Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 370–377. https://doi.org/10.1016/j.saa.2015.07.015
  19. Hopwood, J.D.; Derrick, G.R.; Brown. D.R.; Newman, C.D.; Haley, J.; Kershaw, R.; Collinge, M. The Identification and Synthesis of Lead Apatite Minerals Formed in Lead Water Pipes. J. Chem. 2016, 2016, 9074062. https://doi.org/10.1155/2016/9074062
  20. Bulanov, E.N.; Petrov, S.S.; Knyazev, A.V. New Iodine-Apatites: Synthesis and Crystal Structure. Turk. J. Chem. 2021, 45, 1444–1453. https://doi.org/10.3906/kim-2102-5
  21. Mohd Pu'ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon 2019, 5, 01588. https://doi.org/10.1016/j.heliyon.2019.e01588
  22. Garibay-Alvarado, J.A.; Herrera-Ríos, E.B.; Vargas-Requena, C.L.; Ruíz-Baltazar, Á.J.; Reyes-López, S.Y. Cell Behavior on Silica-Hydroxyapatite Coaxial Composite. PLoS One 2021, 16, 0246256. https://doi.org/10.1371/journal.pone.0246256
  23. Pokhrel, S. Hydroxyapatite: Preparation, Properties and its Biomedical Applications. Adv. Chem. Engineer. Sci. 2018, 8, 225–240. https://doi.org/10.4236/aces.2018.84016
  24. Sari, M.; Hening, P.; Chotimah; Ana, I.D.; Yusuf, Y. Bioceramic Hydroxyapatite-Based Scaffold with a Porous Structure Using Honeycomb as a Natural Polymeric Porogen for Bone Tissue Engineering. Biomater. Res. 2021, 25, 2. https://doi.org/10.1186/s40824-021-00203-z
  25. Skwarek, E.; Janusz, W.; Sternik, D. The Influence of the Hydroxyapatite Synthesis Method on the Electrochemical, Surface and Adsorption Properties of Hydroxyapatite. Adsorp. Sci. Technol. 2017, 35, 507–518. https://doi.org/10.1177/0263617417698966
  26. Ruphuy, G.; Weide, T.; Lopes, J.C.B.; Dias, M.M.; Barreiro, M.F. Preparation of Nano-Hydroxyapatite/Chitosan Aqueous Dispersions: From Lab Scale to Continuous Production Using an Innovative Static Mixer. Carbohydr. Polym. 2018, 202, 20–28. https://doi.org/10.1016/j.carbpol.2018.08.123
  27. Afifi, M.; El-Naggar, M.E.; Muhammad, S.; Alghamdi, N.A.; Wageh, S.; Salem, S.R.; Alhashmialameer, D.; Taleb, M.A. Nanocomposites Based on Hydroxyapatite/Lithium Oxide and Graphene Oxide Nanosheets for Medical Applications. J. Mater. Sci. 2022, 57, 11300–11316. https://doi.org/10.1007/s10853-022-07342-1
  28. Sboui, N.; Agougui, H.; Jabli, M.; Boughzala, K. Synthesis, Physico-Chemical, and Structural Properties of Silicate Apatites: Effect of Synthetic Methods on Apatite Structure and Dye Removal. Inorg. Chem. Commun. 2022, 142, 109628. https://doi.org/10.1016/j.inoche.2022.109628
  29. Get’man, E.I.; Loboda, S.N.; Ignatov, A.V.; Prisedsky, V.V.; Abdul Jabar, M.A.B.; Ardanova, L.I. Isomorphous Substitution of Rare-Earth Elements in Lacunary Apatite Pb8Na2(PO4)6. J. Am. Chem. Soc. 2016, 55, 2165–2173. https://doi.org/10.1021/acs.inorgchem.5b02571
  30. Abdul Jabar, M.A.B.; Get’man, E.I.; Ignatov, A.V. New Gadolinium-Substituted Lead Sodium Apatite Structure. Funct. Mater. 2018, 25, 713–719. https://doi.org/10.15407/fm25.04.713
  31. Rafie, S.M.M.; Nordin, D. Synthesis and Characterization of Hydroxyapatite Nanoparticle. Malays. J. Anal. Sci. 2017, 21, 136–148. http://dx.doi.org/10.17576/mjas-2017-2101-16
  32. Li, Y.; Chen. C.; Jin, M.; Xiang, J.; Tang, J.; Zhao, X.; Zheng, J.; Guo, C. Multi-Mode Excited Cs2NaBiCl6 Based Double Perovskite Phosphor for Anti-Counterfeiting. J. Lumin. 2022, 247, 118915. https://doi.org/10.1016/j.jlumin.2022.118915
  33. Abudoureheman, M.; Han, S.; Dong, X.; Lei, B.; Wang, Y.; Yang, Z.; Long, X.; Pan, S. Syntheses, Characterization and Theoretical Studies of Three Apatite-Type Phosphates MPb4(PO4)3 (M = K, Rb, Cs). J. Alloys Compd. 2017, 690, 330–336. https://doi.org/10.1016/j.jallcom.2016.08.115
  34. Mohammad, A.M.; Salah Eldin, T.A.; Hassan, A.M.; El-Anadouli, B.E. Efficient Treatment of Lead-Containing Wastewater by Hydroxyapatite/Chitosan Nanostructures. Arab. J. Chem. 2017, 10, 683–690. https://doi.org/10.1016/j.arabjc.2014.12.016
  35. Chen, D.; Zhao, J.; Jiang, X. Synthesis and Characterization of Silver Substituted Strontium Phosphate Silicate Apatite Using Solid-State Reaction for Osteoregenerative Applications. J. Bioeng. 2021, 12, 1111–1125. https://doi.org/10.1080/21655979.2021.1899670
  36. El Hayek, E.; El Samrani, A. Lartiges, B.; Kazpard, V.; Aigouy, T. Lead Bioaccumulation in Opuntia ficus-indica Following Foliar or Root Exposure to Lead-Bearing Apatite. Environ. Pollut. 2017, 220, 779–787. https://doi.org/10.1016/j.envpol.2016.10.046
  37. Coulon, A.; Laurencin, D.; Grandjean, A.; Gallet, S.L.; Minier, L.; Rossignol, S.; Campayo, L. Key Parameters for Spark Plasma Sintering of Wet-Precipitated Iodate-Substituted Hydroxyapatite. J. Eur. Ceram. Soc. 2016, 36, 2009–2016. https://doi.org/10.1016/j.jeurceramsoc.2016.02.041
  38. Tite, T.; Popa, A.; Balescu, L.M.; Bogdan, I.M.; Pasuk, I.; Ferreira, J.M.F.; Stan, G.E. Cationic Substitutions in Hydroxyapatite: Current Status of the Derived Biofunctional Effects and they’re in vitro Interrogation Methods. J. Mater. 2018, 11, 2081. https://doi.org/10.3390/ma11112081
  39. Bulanov, E.N.; Knyazev, A.V.; Lelet, M.I. Thermodynamic Modeling of Integration of Strontium into Bone Tissue Hydroxyapatite. J. Solid State Chem. 2017, 1, 42–47. https://doi.org/10.18572/2619-0141-2017-1-1-42-47
  40. Venkatesan, S.; Hassan, M.; Ryu, H.J. Adsorption and Immobilization of Radioactive Ionic-Corrosion-Products Using Magnetic Hydroxyapatite and Cold-Sintering for Nuclear Waste Management Applications. J. Nucl. Mater. 2019, 514, 40–49. https://doi.org/10.1016/j.jnucmat.2018.11.026