The physical and mechanical properties of epoxy composites filled with copper-plated polyamide granules were investigated. Physico-mechanical properties were evaluated based on the results of tensile and impact toughness studies. It is shown that the obtained composites have high strength properties, which are preserved at the level of the unfilled matrix. It was established that the presence of polyamide granules of a copper shell on the surface has little effect on the change in the physical and mechanical properties of epoxy composites. An attempt was made to explain the obtained results using the values of the strength of the adhesive layer formed between the epoxy matrix and the surface of the filler, which is different in nature.
1. Jerold Samuel Chelladurai S., Arthanari R., Meera M.R. (2022). Epoxy-Based Composites. IntechOpen. doi: 10.5772/intechopen.97898
https://doi.org/10.5772/intechopen.97898
2. Naveen Kumar G., Rajesh K., Rama Durga Rao M., Sai Bharath K.P., Javvadi Eswara Manikanta. (2023). A review on mechanical properties of hybrid polymer composites. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.05.059
https://doi.org/10.1016/j.matpr.2023.05.059
3. Jothi Arunachalam S., Saravanan R. (2023). Study on filler reinforcement in polymer matrix composites - A review. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.06.102
https://doi.org/10.1016/j.matpr.2023.06.102
4. Mechin P.-Y., Keryvin V., Grandidier J.-C. (2021). Effect of the nano-filler content on the compressive strength of continuous carbon fibre/epoxy matrix composites. Composites Part B: Engineering, 224, 109223. https://doi.org/10.1016/j.compositesb.2021.109223
https://doi.org/10.1016/j.compositesb.2021.109223
5. Ranjith K., Prithvi C., Rajesh Mathivanan N., Rakshith Gowda D.S. (2023). Experimental and Numerical Investigation on Damage Resistance Characteristics of Woven E-Glass/Epoxy Composite Laminates Subjected to Drop-Weight Impacts. Engineering Proceedings, 59(1), 88. https://doi.org/10.3390/engproc2023059088
https://doi.org/10.3390/engproc2023059088
6. Chung S., Im Y., Jeong H., Nakagawa T. (2003). The effects of metal filler on the characteristics of casting resin for semi-metallic soft tools. J. Mater. Process. Technol., 134, 26-34. https://doi.org/10.1016/S0924-0136(02)00275-3
https://doi.org/10.1016/S0924-0136(02)00275-3
7. Bhagyashekar M.S., Rao R.M.V.G.K. (2007). Effects of Material Test Parameters on the Wear Behavior of Particulate Filled Composites Part 2: Cu-Epoxy and Al-Epoxy Composites. J. Reinf. Plast. Compos., 26, 1769-1780. https://doi.org/10.1177/0731684407079525
https://doi.org/10.1177/0731684407079525
8. Durand J.M., Vardavoulias M., Jeandin M. (1995). Role of reinforcing ceramic particles in the wear behavior of polymer based model composites. Wear, 181-183, 833-839. https://doi.org/10.1016/0043-1648(95)90203-1
https://doi.org/10.1016/0043-1648(95)90203-1
9. Bharadwaja K., Sreeram srinivasa rao, Baburao T. (2022). Epoxy/SiO2 nanocomposite mechanical properties and tribological performance. Materials Today: Proceedings, 62(4), 1712-1716. https://doi.org/10.1016/j.matpr.2021.12.172
https://doi.org/10.1016/j.matpr.2021.12.172
10. Bharadwaja K., Sreeram Srinivasa Rao, Baburao T. (2022). Epoxy reinforced with nano TiO2 particles: An experimental investigation of mechanical & tribological behaviour. Materials Today: Proceedings, 62(4), 1817-1820, https://doi.org/10.1016/j.matpr.2021.12.449
https://doi.org/10.1016/j.matpr.2021.12.449
11. Zhang M.Q., Rong M.Z., Yu S.L., Wetzel B., Friedrich K. (2002). Effect of particle surface treatment on the tribological performance of epoxy based nanocomposites. Wear, 253(9-10), 1086-1093. https://doi.org/10.1016/S0043-1648(02)00252-1.
https://doi.org/10.1016/S0043-1648(02)00252-1
12. Bhavith K., Prashanth Pai M, Sudheer M, Ramachandra C G, Maruthi Prashanth B H, Kiran Kumar B. (2023). The Effect of Metal Filler on the Mechanical Performance of Epoxy Resin Composites. Engineering Proceedings, 59(1), 200. https://doi.org/10.3390/engproc2023059200
https://doi.org/10.3390/engproc2023059200
13. Monoranu M., Mitchell R.L., Kerrigan K., Fairclough J., Ghadbeigi H. (2022). The effect of particle reinforcements on chip formation and machining induced damage of modified epoxy carbon fibre reinforced polymers (CFRPs). Composites Part A: Applied Science and Manufacturing, 154, 106793. https://doi.org/10.1016/j.compositesa.2021.106793
https://doi.org/10.1016/j.compositesa.2021.106793
14. Papageorgiou D., Terzopoulou Z., Fina A., Cuttica F., Papageorgiou G., Bikiaris D., Chrissafis K., Young R., Kinloch I. (2018). Enhanced thermal and fire retardancy properties of polypropylene reinforced with a hybrid graphene/glass-fibre filler. Composites Science and Technology, 156, 95-102. https://doi.org/10.1016/j.compscitech.2017.12.019
https://doi.org/10.1016/j.compscitech.2017.12.019
15. Zheng J., Liu Y., Wang Q., Cheng L., Zhang C., Zhang T., Shao J., Dai F. (2024). Mechanical properties and thermal characteristics of three nano-filler/silk fiber reinforced hybrid composites: A comparative study using a ductile epoxy resin matrix. Polymer Testing, 130, 108319. https://doi.org/10.1016/j.polymertesting.2023.108319
https://doi.org/10.1016/j.polymertesting.2023.108319
16. Dhiwar D., Verma S.K., Gupta N., Agnihotri P.K. (2024). Augmenting the fracture toughness and structural health monitoring capabilities in Kevlar/epoxy composites using carbon nanotubes. Engineering Fracture Mechanics, 297, 109877. https://doi.org/10.1016/j.engfracmech.2024.109877
https://doi.org/10.1016/j.engfracmech.2024.109877
17. Li Z., Qi X., Liu C., Fan B., Yang X. (2023). Particle size effect of PTFE on friction and wear properties of glass fiber reinforced epoxy resin composites. Wear, 532-533, 205104. https://doi.org/10.1016/j.wear.2023.205104
https://doi.org/10.1016/j.wear.2023.205104
18. Kiran M.D., Lokesh Yadhav B R., Babbar A., Kumar R., Sharath Chandra H S, Shetty R.P., Sudeepa K B, Sampath Kumar L, Kaur R., Meshel Q. Alkahtani, Islam S., Kumar R. (2024). Tribological properties of CNT-filled epoxy-carbon fabric composites: Optimization and modelling by machine learning. Journal of Materials Research and Technology, 28, 2582-2601. https://doi.org/10.1016/j.jmrt.2023.12.175
https://doi.org/10.1016/j.jmrt.2023.12.175
19. Adak N.C., Lee G.-H., Tung H.T., Lim S., Lingappan N., Kang H.W., Lee W. (2023). Superior high-temperature mechanical and thermal performance of carbon fiber/epoxy composites by incorporating highly dispersed aramid nanofibers. Applied Materials Today, 35, 101956. https://doi.org/10.1016/j.apmt.2023.101956
https://doi.org/10.1016/j.apmt.2023.101956
20. Soni C., Patnaik P.K., Mishra S.K., Panda S.S., Rath K.C. (2023). Sisal fiber and groundnut shell particulate reinforced hybrid epoxy composites: A study on mechanical and tribological properties. Materials Today: Proceedings. In Press. https://doi.org/10.1016/j.matpr.2023.11.041
https://doi.org/10.1016/j.matpr.2023.11.041
21. Chen C., Xue Y., Li X., Wen Y., Liu J., Xue Z., Shi D., Zhou X., Xie X., Mai Y.-W. (2019). High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Composites Part A: Applied Science and Manufacturing, 118, 67-74. https://doi.org/10.1016/j.compositesa.2018.12.019
https://doi.org/10.1016/j.compositesa.2018.12.019
22. Wu Y., Fang R., Zhou Z., Cai F., Hu Y., Zhang X. (2024). Theoretical study on thermal conductivity of epoxy composites doped with boron nitride with multiple dimensions. Materials Today Communications, 38, 107972. https://doi.org/10.1016/j.mtcomm.2023.107972
https://doi.org/10.1016/j.mtcomm.2023.107972
23. Akçay S.B., Kocaman M., Çelebi M., Güler O., Varol T. (2024). Surface modification for improving interfacial, mechanical and thermal performance characteristics in epoxy composites: Electroless nickel enhancement of dendritic copper particle-reinforced epoxy. Surface and Coatings Technology, 478, 130417. https://doi.org/10.1016/j.surfcoat.2024.130417
https://doi.org/10.1016/j.surfcoat.2024.130417
24. Kucherenko А.N., Mankevych S.О., Kuznetsova М.Ya., Moravskyi V.S. (2020). Peculiarities of metalization of pulled polyethylene. Chemistry, technology and application of substances, 3:2, 140-145. https://doi.org/10.23939/ctas2020.02.140
https://doi.org/10.23939/ctas2020.02.140
25. Moravskyi V., Kucherenko A., Kuznetsova M., Dulebova L., Spišák E., Majerníková J. (2020). Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials, 13, 2856 https://doi.org/10.3390/ma13122856
https://doi.org/10.3390/ma13122856
26. Kucherenko A., Nikitchuk О., Dulebova L., Moravskyi V. (2021). Activation of polyethylene granules by finely dispersed zinc. Chemistry, technology and application of substances, 4(1), 191-197. https://doi.org/10.23939/ctas2021.01.191
https://doi.org/10.23939/ctas2021.01.191
27. WAXSFIT - Analysis of X-RAY diffraction curves. Available online: http://www2.ath.bielsko.pl/~mrabiej/waxsfit/sub/main_en/ (accessed on 04.12.2023).
28. Tadayyon Gh., Zebarjad S.M., Sajjadi S.A. (2011). Effect of both nano-size alumina particles and severe deformation on polyethylene crystallinity index. Journal of Thermoplastic Composite Materials, 25(4), 479-490. DOI: 10.1177/0892705711415186
https://doi.org/10.1177/0892705711415186