We propose a statistical theory of classical-quantum description of electro-diffusion processes of intercalation in "electrolyte – electrode" system. Using the nonequilibrium statistical operator method the generalized transport equations of Nernst-Planck type for ions and electrons in the "electrolyte – electrode" system are obtained. These equations take into account time memory effects and spatial heterogeneity. Within a classical description an analytical calculation of spatially inhomogeneous diffusion coefficients for ions is carried out.
- Advances in Lithium-Ion Batteries, edited by W. A. van Schalkwijk, B. Scrosati. Kluwer Academic, Plenum Publ., N.-Y. (2002).
- Skundin A. M., Efimov O. N., Yarmolenko O. V. Russian Chemical Rev. 71(4), 378 (2002) (in Russian).
- Wagemaker M. Structure and Dynamics of Lithium in Anatase TiO2. Delft Univer. Press, Netherlands (2002).
- Korovin N. V., Skundin A. M. Chemical power sources. Moscow (2003), (in Russian).
- Manthiram A. Lithium batteries, edited by Gholam-Abbas Nazri. Springer, USA (2009).
- Ferguson T. R., Ferguson T. R., Bazant M. Z. Nonequilibrium Thermodynamics of Porous Electrodes. J. Electrochem. Soc. 159, A1967 (2012).
- Xie Y., Li J., Yuan C. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling. Electrochimica. Acta. 127, 266 (2014).
- Pinson M. B., Bazant M. Z. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction. J. Electrochem. Soc. 160, A243 (2013).
- Bisquert J., Compte A. Theory of the electrochemical impedance of anomalous diffusion. J. Electroanalytical Chem. 499, 112 (2013).
- Impedance spectroscopy. Theory, experiment and application, edited by E. Barsoukov, J. R. Macdonald. Wiley interscience, Canada (2005).
- Gryhorchak I. I., Ponedilok H. V. Impedance spectroscopy. Lviv Polytechnic National University, Lviv (2011), (in Ukrainian).
- Umeda M., Dokko K. at all, Electrochemical impendance study of Li-ion insertion into mesocarbon microbead single particle electrode (Part 1. Graphitized carbon). Electrochim. 47, 885 (2001).
- Hjeim A-K., Lindbergh G. Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impendance spectroscopy (EIS). Electrochim. Acta. 47, 1747 (2002).
- Kern R., Sastrawan R., Ferbar J., Stangl R., Luther J. Modeling and interpretation of electrical impendance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta. 47, 4213 (2002).
- Churikov A. V., Volgin M. A., Pridatko K. I. On the determination of kinetic characteristics of lithium intercalation into carbon. Electrochim. Acta. 47, 2857 (2002).
- Churikov A. V., Ivanischev A. V. Application of pulse methods to the determination of the electrochemical characteristics of lithium intercalates. Electrochim. Acta. 48, 3677 (2003).
- Portnyagin D. Modelling of discharge of lithium battery with microporous carbon electrode. Preprint of National Acad. of Sci. of Ukraine; Inst. for Cond. Matter Phys.: ICMP-06-11E, Lviv, (2006).
- Biesheuvel P. M., Bazant M. Z. Diffuse charge and Faradaic reactions in porous electrodes. Phys. Rev. E. 83, 061507 (2011).
- Rica R., Ziano A. R., Salerno D., Mantegazza F., Bazant M. Z., Brogioli D. Electro-diffusion of ions in porous electrodes for capacitive extraction of renewable energy from salinity differences. Electrochimica Acta. 92, 304 (2013).
- Bazant M.Z. Theory of Chemical Kinetics and Charge Transfer based on Nonequilidrium Thermodynamics. arXiv, 1208.1587V2. cond - mat.mtrl-sci, 2013, 17p.
- Biesheuvel P. M., Fu Y., Bazant M. Z. Electrochemistry and Capacitive Charging of Porous Electrodes in Asymmetric Multicomponent Electrolytes. Russian Jour. Electrochem. 48, 580 (2012).
- McKinnon W. R., Haering R. R. Physical Mechanisms of Intercalation, in: Modern Aspects of Electrochemistry. Academic Press, New York, 15, 235 (1983).
- Marcus R. A. Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture). Angev. Chem. Int. Ed. Engl. 32/2, 1111 (1993).
- Marcus R. A. Interaction Theory and Experiment in Reaction Kinetics. Chapt. 1, Comprehensive Chemical Kinetics (eds. R. G. Compton and G. Hancock). Elsevier, Amsterdam, 37, 1 (1999).
- Dugaev V. K. Mechanism of Bipolar Diffusion of Intercalated Ions in Layered Crystals. Phys. Stat. Sol. 219, 31 (2000).
- Gao Y. Q., Georgievskii Yu., Marcus R. A. On the theory of electron transfer reactions at semiconductor electrode / liquid interfaces. J. Chem. Phys. 112, 3358 (2000).
- Lukiyanets B. A., Matulka D. V., Grygorchak I. I. Quantum mechanic tunneling and efficiency of Faraday current-generating process in porous nanostructures. Condens. Matter Phys. 14, 23705 (2011).
- Vakarin E. V., Badiali J. P. Role of host distortion in the intercalation process. Phys. Rev. B. 63, 014304 (2000).
- Velychko O. V., Stasyuk I. V. Lattice model for lithium intercalated anatase: phase equilibrium, thermodynamic and dielectric properties. Preprint of National Acad. of Sci. of Ukraine; Inst. for Cond. Matter Phys.: ICMP-08-16U, Lviv, (2008).
- Velychko O. V., Stasyuk I. V. Phase separation in lithium intercalated anatase: A Theory. Condens. Matter Phys. 12, 249 (2009).
- Stasyuk I. V., Dublenych Yu. I. Phase transitions and phase separations in an S=1 pseudospin-electron model: Application of the model to the intercalated crystals. Phys. Rev. B. 72, 224209 (2005).
- Khaldeev G. V., Petrov S. N. Computer simulation of electrochemical processes on interfaces. Russian Chem. Rev. 67(2), 107 (1998).
- Wagemaker M., Van Der Ven A., Morgan D., Ceder G., Mulder F. M., Kearley G. J. Thermodynamics of spinel LixTiO2 from first principles. Chem. Phys. 317, 130 (2005).
- Moriguchi K., Yutaka Itoh, Munetoh Shinji, Kamei Kazuhito, Abe Masaru, Omaru Atsuo, Nagamine Masayuki. Nano-tube-like surface structure in graphite anodes for lithium-ion secondary batteries. Physica B. 323, 127 (2002).
- Korovin N. V. Intercalation into cathode materials. Diffusion coefficient of Lithium. Elektrokhimiya. 33, No.6, 739 (1999) (in Russian).
- Xia H., Lu Li, Ceder G. Li diffusion in thin films prepared by pulsed laser deposition. J. Power Sour. 159, 1422 (2006).
- Ding N., Xu J., Yao Y. X., Wegner G., Fang X., Chen C. H., Lieberwirth I. Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics. 180, 222 (2009).
- Goncalves W. D., Iost R. M., Crespilho F. N. Diffusion Mechanisms in Nanoelectrodes: Evaluating the Edge Effect. Electroch. Acta. 123, 66 (2014).
- Rui X. H., Ding N., Liu J., Li C., Chen C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electroch. Acta. 55, 2384 (2010).
- Mandzyuk V. I., Nagirna N. I., Lisovskyy R. P. Morphology and Electrochemical Properties of Thermal Modified Nanoporous Carbon as Electrode of Lithium Power Sources. J. of Nano- and Electronic Phys. 6, No.1, 01017 (2014) (in Ukrainian).
- Zubarev D. N., Morozov V. G., Röpke G. Statistical Mechanics of Nonequilibrium Processes, vol.1. Akademie Verlag, Berlin (1997).
- Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ignatyuk V. V., Hnativ B. V. Reaction-diffusion processes in systems “metal–gas”. Lviv Polytechnic National University, Lviv (2009), (in Ukrainian).
- Kostrobij P. P., Markovych B. M., Vasylenko A. I., Tokarchuk M. V. Viscoelastic description of electron subsystem of a semi-bounded metal within generalized "jellium" model. Condens. Matter Phys. 14, 43001 (2011).