SOR Homotopy perturbation method to solve integro-differential equations

We present in this paper, SOR Homotopy perturbation method, a new decomposition method by introducing a parameter $\omega$ to extend a classical homotopy perturbation method for solving integro-differential equations of various kinds.  Using SOR homotopy perturbation method and its iterative scheme we can give the exact solution or a closed approximate to the solution of the problem.  The convergence of the proposed method has been elaborated and some illustrative examples are presented with applications to Fredholm and Volterra integral equations.

  1. Jerri A. J.  Introduction to Integral Equations with Applications.  Wiley–Interscience (1999).
  2. Huesin J., Omar A., AL-shara S.  Numerical solution of linear integro-differential equations.  Journal of Mathematics and Statistics.  4 (4), 250–254 (2008).
  3. He J.-H.  Homotopy perturbation technique.  Computer Methods in Applied Mechanics and Engineering.  178 (3–4), 257–262 (1999).
  4. He J.-H.  Homotopy perturbation method: a new nonlinear analytical technique.  Applied Mathematics and Computation.  135 (1),  73–79 (2005).
  5. He J.-H.  The homotopy perturbation method for nonlinear oscillators with discontinuities.  Applied Mathematics and Computation.  151 (1), 287–292 (2004).
  6. He J.-H.  Application of homotopy perturbation method to nonlinear wave equations.  Chaos, Solitons & Fractals.  26 (3), 695–700 (2005).
  7. Zhang L.-N., He J.-H.  Homotopy perturbation method for the solution of the electrostatic potential differential equation.  Mathematical Problems in Engineering.  2006, 083878 (2006).
  8. Wang Y.-Xi., Si H.-Y., Mo L.-F.  Homotopy Perturbation Method for Solving Reaction-Diffusion Equations.  Mathematical Problems in Engineering.  2008, 795838 (2008).
  9. Jafari H., Zabihi V., Saidy M.  Application of Homotopy Perturbation Method for Solving Gas Dynamics Equation.  Applied Mathematical Sciences.  2 (48), 2393–2396 (2008).
  10. Jazbi B., Moini M.  Application of He's homotopy perturbation method for solving Schrodinger equation.  Iranian Journal of Mathematical Sciences and Informatics.  3 (2), 13–19 (2008).
  11. Shakeri F., Dehghan M.  Solution of delay differential equations via a homotopy perturbation method.  Mathematical and Computer Modelling.  48 (3–4), 486–498 (2008).
  12. Matinfar M., Saeidy M.  The Homotopy Perturbation Method for Solving Fuzzy Integral Equations.  Journal of Mathematics and Computer Science.  1 (4),  377–385 (2010).
  13. Saeed R. K.  Homotopy perturbation method for solving system of nonlinear Fredholm integral equations of the second kind.  Journal of Applied Sciences Research.  4 (10), 1166–1173 (2008).
  14. Ghorbani A.  Beyond Adomian polynomials: He polynomials.  Chaos, Solitons & Fractals.  39 (3), 1486–1492 (2009).
  15. Ayati Z., Biazar J.  On the convergence of Homotopy perturbation method.  Journal of the Egyptian Mathematical Society.  23 (2), 424–428 (2015).
  16. Froberg C. E.  Introduction to Numerical Analysis.  Addison–Wesley Pub Company (1968).