АДАПТИВНИЙ ФРАКЦІЙНИЙ НЕЙРОННИЙ АЛГОРИТМ ДЛЯ МОДЕЛЮВАННЯ ТЕПЛОВОЛОГОПЕРЕНЕСЕННЯ

Надіслано: Листопад 12, 2024
Переглянуто: Листопад 20, 2024
Прийнято: Листопад 25, 2024
1
Національний університет "Львівська політехніка", м. Львів, Україна
2
Національний лісотехнічний університет України

Запропоновано фракційну нейронну мережу з адаптивним темпом навчання для моделювання динаміки неізотермічного тепло- та масоперенесення в капілярно-пористих матеріалах з урахуванням ефекту пам’яті та просторової нелокальності. Використано архітектуру нейронної мережі з роз’єднаною структурою, яка базується на функціях втрат, що враховують фізичні особливості досліджуваного процесу. Для навчання мережі використано поетапний підхід, що дозволяє зменшити чутливість до помилок та збоїв. Досліджено структуру мережі, оптимізовано її параметри, а також обрано відповідні активаційні функції та методи регуляризації з метою досягнення високої точності та достовірності результатів моделювання

  1.  Y. Sokolovskyy, T. Samotii, I. Kroshnyy, “Physics-Informed Neural Network for Modeling the Process of Heat-and-Mass Transfer Based on the Apparatus of Fractional Derivatives,” Proceedings of the 2023 IEEE 17th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), Lviv, Ukraine, February 22–25, 2023, pp. 30–35.
  2.  Y. Sokolovskyy, K. Drozd, T. Samotii, I. Boretska, “Fractional-Order Modeling of Heat and Moisture Transfer in Anisotropic Materials Using a Physics-Informed Neural Network,” Materials, vol. 17, p. 4753, 2024. https://doi.org/10.3390/ma17194753.
  3.  B. Golodenko, “Estimation of the adequacy of the fractal model of the atomic structure of amorphous silicon,” Semiconductors, vol. 44, pp. 84–88, 2010. https://doi.org/10.1134/S1063782610010148.
  4. Y. Sokolovskyy, I. Boretska, B. Gayvas, I. Kroshnyy, V. Shymanskyi, M. Gregus, “Mathematical modeling of heat transfer in anisotropic biophysical materials, taking into account the phase transition boundary,” Proceedings of the 2nd International Workshop on Informatics and Data-Driven Medicine, IDDM–CEUR, vol. 2488, pp. 121–132, 2019.
  5.  S. Aman, Q. Al-Mdallal, I. Khan, “Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium,” Journal of King Saud University - Science, vol. 32, pp. 450–458, 2020.
  6. Z.-Y. Li, H. Liu, X.-P. Zhao, W.-Q. Tao, “A multi-level fractal model for the effective thermal conductivity of silica aerogel,” Journal of Non-Crystalline Solids, vol. 430, pp. 43–51, 2015. https://doi.org/10.1016/j.jnoncrysol.2015.09.023.
  7. Y. Sokolovskyy, M. Levkovych, O. Mokrytska, Y. Kaspryshyn, “Mathematical Modeling of Nonequilibrium Physical Processes, Taking into Account the Memory Effects and Spatial Correlation,” Proceedings of the 9th International Conference on Advanced Computer Information Technologies, ACIT 2019, 2019, pp. 56–59. doi:10.1109/ACITT.2019.8780011.
  8.  Z.-H. Wu, A. Debbouche, J. Guirao, X.-J. Yang, “On local fractional Volterra integral equations in fractal heat transfer,” Thermal Science, vol. 20, pp. 202–202, 2016. https://doi.org/10.2298/TSCI151217202W.
  9.  Yan S., “Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer,” Thermal Science, vol. 19, no. suppl. 1, pp. 131–135, 2015.
  10.  X.-J. Yang, F. R. Zhang, “Local Fractional Variational Iteration Method and Its Algorithms,” Adv. Comput. Math. Appl., vol. 1, no. 3, pp. 139–145, 2012.
  11.  Y. Sokolovskyy, V. Shymanskyi, M. Levkovych, V. Yarkun, “Mathematical modeling of heat and moisture transfer and rheological behavior in materials with fractal structure using the parallelization of predictor-corrector numerical method,” Proceedings of the 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, 2016, pp. 108–111.
  12.  M. M. Meerschaert, C. Tadjeran, “Finite difference approximations for fractional advection–dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, pp. 65–77, 2004.
  13.  E. N. Akimova, M. A. Sultanov, V. E. Misilov, Y. Nurlanuly, “Parallel Algorithm for Solving the Inverse Two-Dimensional Fractional Diffusion Problem of Identifying the Source Term,” Fractal Fract., vol. 7, p. 801, 2023. https://doi.org/10.3390/fractalfract7110801.
  14.  A. Lagaris, A. Likas, D. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations,” IEEE Transactions on Neural Networks, vol. 9, pp. 987–1000, 1998.
  15.  T. Chen, H. Chen, “Approximations of continuous functionals by neural networks with application to dynamic systems,” IEEE Transactions on Neural Networks, vol. 4, no. 6, pp. 910–918, 1993.
  16.  T. Chen, H. Chen, “Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems,” IEEE Transactions on Neural Networks, vol. 6, no. 4, pp. 911–917, 1995.
  17. M. Raissi, P. Perdikaris, G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019. https://doi.org/10.1016/j.jcp.2018.10.045.
  18.  D. Zhang, L. Lu, L. Guo, G. E. Karniadakis, “Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems,” Journal of Computational Physics, vol. 397, pp. 1–19, 2019.
  19.  D. Jagtap, K. Kawaguchi, G. E. Karniadakis, “Adaptive activation functions accelerate convergence in deep and physics-informed neural networks,” Journal of Computational Physics, vol. 404, pp. 1–23, 2020.
  20. L. Lu, X. Meng, Z. Mao, G. E. Karniadakis, “DeepXDE: A deep learning library for solving differential equations,” SIAM Review, vol. 63, no. 1, pp. 208–228, 2021.
  21.  D. Jagtap, E. Kharazmi, G. E. Karniadakis, “Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems,” Comput. Methods Appl. Mech. Eng., vol. 365, pp. 113028, 2020.
  22.  G. Pang, M. D’Elia, M. Parks, G. E. Karniadakis, “nPINNs: Nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator,” Journal of Computational Physics, vol. 422, pp. 109760, 2020.
  23.  M. Lahariya, F. Karami, C. Develder, G. Crevecoeur, “Physics-informed Recurrent Neural Networks for The Identification of a Generic Energy Buffer System,” Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 2021, pp. 1044–104.
  24.  Z. Fang, “A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, pp. 5514–5526, 2021.
  25. G. Pang, L. Lu, G. E. Karniadakis, “fPINNs: Fractional physics-informed neural networks,” SIAM Journal on Scientific Computing, vol. 41, pp. A2603–A2626, 2019.
  26. F. Rostami, A. Jafarian, “A new artificial neural network structure for solving high-order linear fractional differential equations,” International Journal of Computational Mathematics, vol. 95, pp. 528–539, 2018. https://doi.org/10.1080/00207160.2017.1291932.
  27.  S. Wang, H. Zhang, X. Jiang, “Fractional physics-informed neural networks for time-fractional phase field models,” Nonlinear Dynamics, vol. 110, no. 4, pp. 2715–2739, 2022. https://doi.org/10.1007/s11071-022-07746-3.
  28. A. Atangana, A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions,” Abstract and Applied Analysis, vol. 2013, Article ID 279681, 2013.
  29. V. V. Uchaikin, Method drobovykh pokhidnykh [Method of Fractional Derivatives], Ulyanovsk: Artishok Publ., Russia, 2008.
  30. A. V. Morozov, V. L. Levkivskyi, D. D. Plechystyy, “Activation functions in neural networks: Overview and comparison,” Scientific Notes of V.I. Vernadsky Taurida National University. Series: Technical Sciences, vol. 35 (74), no. 3, 2024. https://doi.org/10.32782/2663-5941/2024.3.1/22.