Синтез, ідентифікація й оцінка антибактеріальної активності деяких нових 4,5-дигідро-1h-піразолів, похідних заміщених халконів

2025;
: cc. 482 - 494
1
Environmental and Pollution Engineering Department, Technical Engineering College, Kirkuk, Northern Technical University, Iraq
2
Department of Chemistry, College of Sciences, University of Kirkuk, Iraq
3
Department of Chemistry, College of Sciences, University of Kirkuk

У цій роботі успішно синтезовано серію нових похідних 4,5-дигідро-1H-піразолу (M21-M25) через реакції різноманітних альдегідів з кетонами для отримання халконів з подальшою реакцією останніх з гідразином і фенілгідразином. Синтезовані сполуки були ідентифіковані за допомогою FT-IR спектроскопії, 1H ЯМР і 13C ЯМР спектроскопії. Біологічна активність синтезованих сполук була попередньо оцінена щодо певних типів грампозитивних (Staphylococcus aureus) і грамнегативних (Escherichia coli) бактерій. Результати показали високий антибактеріальний ефект проти обох типів бактерій за високих концентрацій.

[1] Kedar, M.; Shirbhate, M.; Chauhan, R.; Sharma, S.; Verma, A. Design Synthesis and Evaluation of Anticancer Pyrazole Derivatives of Chalcone Scaffold. Research Journal of Pharmacy and Technology 2020, 13, 342–346. https://doi.org/10.5958/0974- 360X.2020.00069.4

[2] Schmidt, A.; Dreger, A. Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Currr. Org. Chem. 2011, 15, 1423–1463. https://doi.org/10.2174/138527211795378263

[3] Secrieru, A.; O’Neill, P. M.; Cristiano, M. L. S. Revisiting the Structure and Chemistry of 3 (5)-Substituted Pyrazoles. Molecules 2019, 25, 42. https://doi.org/10.3390/molecules25010042

[4] Pechmann H. von .Pyrazol aus Acetylen und Diazomethan. Ber. Dtsch. Chem. Ges. 1898, 31, 2950–2951. https://doi.org/10.1002/cber.18980310363

[5] Alam, M. A. Pyrazole: An Emerging Privileged Scaffold in Drug Discovery. Future Med. Chem. 2023, 15, 2011–2023. https://doi.org/10.4155/fmc-2023-0207

[6] Ameziane El Hassani, I.; Rouzi, K.; Assila, H.; Karrouchi, K.; Ansar, M. h. Recent advances in the synthesis of pyrazole https://doi.org/10.3390/reactions4030029

[7] Hawaiz, F. E.; Samad, M. K. Synthesis and Spectroscopic Characterization of Some New Biological Active Azo–Pyrazoline Derivatives. J. Chem. 2012, 9, 1613–1622. https://doi.org/10.1155/2012/525940

[8] Nitulescu, G. M.; Stancov, G.; Seremet, O. C.; Nitulescu, G.; Mihai, D. P.; Duta-Bratu, C. G.; Barbuceanu, S. F.; Olaru, O. T. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023, 28, 5359. https://doi.org/10.3390/molecules28145359

[9] Ansari, A.; Ali, A.; Asif, M. Biologically Active Pyrazole Derivatives. New J. Chem. 2017, 41, 16–41. https://doi.org/10.1039/C6NJ03181A

[10] Karrouchi, K.; Mortada, S.; Issaoui, N.; El-guourrami, O.; Arshad, S.; Bouatia, M.; Sagaama, A.; Benzeid, H.; El Karbane, M.; Faouzi, M. E. A. Synthesis, Crystal Structure, Spectroscopic, Antidiabetic, Antioxidant and Computational Investigations of Ethyl 5-Hydroxy-1-isonicotinoyl-3-methyl-4, 5-dihydro-1H- pyrazole-5-carboxylate. J. Mol. Struct. 2022, 1251, 131977. https://doi.org/10.1016/j.molstruc.2021.131977

[11] Ebenezer, O.; Shapi, M.; Tuszynski, J. A. A Review of the Recent Development in the Synthesis and Biological Evaluations of Pyrazole Derivatives. Biomedicines 2022, 10, 1124. https://doi.org/10.3390/biomedicines10051124

[12] Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y. N.; Al-Aizari, F. A.; Ansar, M. h. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. https://doi.org/10.3390/molecules23010134

[13] Bennani, F. E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Faouzi, M. E. A. Overview of Recent Developments of Pyrazole Derivatives as an Anticancer Agent in Different Cell Line. Bioorg. Chem. 2020, 97, 103470. https://doi.org/10.1016/j.bioorg.2019.103470

[14] Lusardi, M.; Spallarossa, A.; Brullo, C. Amino-Pyrazoles in Medicinal Chemistry: A Review. Int. J. Mol. Sci. 2023, 24, 7834. https://doi.org/10.3390/ijms24097834

[15] Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P. Pyrazolone Structural Motif in Medicinal Chemistry: Retrospect and Prospect. Eur. J. Med. Chem. 2020, 186, 111893. https://doi.org/10.1016/j.ejmech.2019.111893

[16] Lai, P.-M.; Ha, S.-T. Synthesis of Heterocyclic Pyridine- Based Chalcones with Dimeric Structure. Chem. Chem. Technol. 2022, 16, 1-6. https://doi.org/10.23939/chcht16.01.001

[17] Jasim, S. S.; Abdulwahid, J. H.; Beebany, S.; Mohammed, B. Synthesis, Identification, and Antibacterial Effect Assessment of Some New 1, 4-Thiazepines, Derived from Substituted Diphenyl Acrylamides and Diphenyl Dienones. Chem. Methodol. 2023, 7, 509–523. https://doi.org/10.22034/chemm.2023.392659.1668

 [18] Beebany, S.; Jasim, S. S.; Al-Tufah, M. M.; Arslan, S. Preparation and Identification of New 1, 4-bis (5, 3-Substituted-2, 3-dihydro-1H-pyrazole-1-yl) buta-1, 4-dione Derivatives with their Antibacterial Effect Evaluation. Chem. Methodol. 2023, 7, 123–136. https://doi.org/10.22034/chemm.2023.365060.1614

 [19] Reller, L. B.; Weinstein, M.; Jorgensen, J. H.; Ferraro, M. J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. https://doi.org/10.1086/647952

[20] Bonev, B.; Hooper, J.; Parisot, J. Principles of Assessing Bacterial Susceptibility to Antibiotics Using the Agar Diffusion Method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. https://doi.org/10.1093/jac/dkn090

[21] Al-Saheb, R.; Makharza, S.; Al-Battah, F.; Abu-El-Halawa, R.; Kaimari, T.; Abu Abed, O. S. Synthesis of New Pyrazolone and Pyrazole-Based Adamantyl Chalcones and Antimicrobial Activity. Biosci. Rep. 2020, 40, BSR20201950. https://doi.org/10.1042/BSR20201950

[22] Deska, A.; Zulhadjri, Z.; Norita O.; Efdi, M. Clay Enriched with Ca2+ and Cu2+ As the Catalyst for the Production of Methyl Esters from CPO on a Laboratory Scale. Chem. Chem. Technol. 2022, 16, 678–683. https://doi.org/10.23939/chcht16.04.678

[23] Mhaibes, R. M. Antimicrobial and Antioxidant Activity of Heterocyclic Compounds Derived from New Chalcones. J. Med. Chem. Sci. 2023, 6, 931–937. https://doi.org/10.26655/jmchemsci.2023.4.25

[24] Salum, K. A.; Alidmat, M. M.; Khairulddean, M.; Kamal, N. N. S. N. M.; Muhammad, M. Design, Synthesis, Characterization, and Cytotoxicity Activity Evaluation of Mono-Chalcones and New Pyrazolines Derivatives. J. Appl. Pharm Sci. 2020, 10, 020– 036. https://doi.org/10.7324/japs.2020.10803

[25] Pola, S.; Banoth, K. K.; Sankaranarayanan, M.; Ummani, R.; Garlapati, A. Design, Synthesis, in Silico Studies, and Evaluation of Novel Chalcones and their Pyrazoline Derivatives for Antibacterial and Antitubercular Activities. Med. Chem. Res. 2020, 29, 1819–1835.  https://doi.org/10.1007/s00044-020-02602-8