Запис оптичної інформації на основі фотокаталітичного ефекту на наночастинках діоксиду титану та полімерному нанокомпозиті, легованому люмінесцентним барвником

2025;
: cc. 549 - 556
1
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
2
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
3
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
4
Iv. Javakhishvili Tbilisi State University, 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University
5
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
6
Ivane Javakhishvili Tbilisi State University R.Agladze Institute of Inorganic Chemistry and Electrochemistr
7
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Georgia
8
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Georgia
9
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University
10
Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, Georgia

Діоксид титану є найпоширенішою напівпровідниковою речовиною, яку використовують як фотокаталітичний матеріал у самоочисних поверхнях, системах очищення повітря та води, стерилізації, виділення водню та фотоелектрохімічному перетворенні. У цій роботі ми вперше пропонуємо запис оптичної інформації на основі фотокаталітичного ефекту на наночастинках діоксиду титану та люмінесцентному полімерному нанокомпозиті, легованому барвником. Оптична інформація записувалась у вигляді голографічних ґраток. Для запису оптичної інформації на полімерному нанокомпозиті було застосовано голографічні та неголографічні методи. З цією метою було використано зелений лазерний промінь і галогенно-вольфрамову лампу зі смуговим фільтром. У результаті було отримано високощільну оптичну інформацію з оптичною щільністю 500 мм-1. Дані, записані на полімерному нанокомпозиті, є стабільними та довговічними.

[1] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyl Trimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325– 338. https://doi.org/10.23939/chcht17.02.325

[2] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3H-indolenine. Chem. Chem. Technol. 2023, 17, 549–556. https://doi.org/10.23939/chcht17.03.549

[3] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740–747. https://doi.org/10.23939/chcht17.04.740

[4] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial- Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758

[5] Tatrishvili, T.; Mukbaniani, O. Cyclic Silicon Organic Copolymers: Synthesis and Investigation. Review. Chem. Chem. Technol. 2024, 18, 131–142. https://doi.org/10.23939/chcht18.02.131

[6] Zozulya, G.; Kunty, О.; Shepida, M.; Kordan, V. Synthesis of Silver Nanoparticles and Silver-Gold Binary System by Galvanic Replacement in an Ultrasonic Field. Chem. Chem. Technol. 2024, 18, 342–349. https://doi.org/10.23939/chcht18.03.342

[7] Mekuye, B.; Abera, B. Nanomaterials: An Overview of Synthesis, Classification, Characterization, and Applications. Nano Select. 2023, 4, 486–501. https://doi.org/10.1002/nano.202300038

[8] Chubinidze, K.; Partsvania, B.; Sulaberidze, T.; Khuskivadze, A.; Davitashvili, E.; Koshoridze, N. Luminescence Enhancement in Nanocomposite Consisting of Polyvinyl Alcohol Incorporated Gold Nanoparticles and Nile Blue 690 Perchlorate. Appl. Opt. 2014, 53, 7177–7181. https://doi.org/10.1364/AO.53.007177

[9] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0

[10] Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCBs in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. https://doi.org/10.1007/BF01685575

[11] Frank, S.N.; Bard, A.J. Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders. J. Phys. Chem. 1977, 81, 1484–1488. https://doi.org/10.1021/ja00443a081

[12] Xu, M.X.; Wang, Y.H.; Geng, J.F.; Jing, D.W. Photodecomposition of NOx on Ag/TiO2 Composite Catalysts in a Gas Phase Reactor. Chem. Eng. J. 2017, 307, 181–188. https://doi.org/10.1016/j.cej.2016.08.080

[13] Keller, A.A.; McFerran, S.; Lazareva, A. Suh, S. Global Life Cycle Releases of Engineered Nanomaterials. J Nanopart Res2013, 15, 1692. https://doi.org/10.1007/s11051-013-1692-4

[14] El-Hosainy, H.; Mine, Sh.; Toyao, T.; Shimizu, K-I.; Tsunoji, N.; Esmat, M.; Doustkhah, E.; El-Kemary, M.; Ide, Y. Mof-Like Silicate Stabilises Diiron to Mimic Uv-Shielding TiO2 Nanoparticle Materials. Today Nano 2022, 19, 100227. http://dx.doi.org/10.2139/ssrn.4045989

[15] Gyulavári, T.; Kovács, K.; Kovács, Z.; Bárdos, E.; Kovács, G.; Baán, K.; Magyari, K.; Veréb, G.; Pap, Z.; Hernadi, K. Preparation and Characterization of Noble Metal Modified Titanium Dioxide Hollow Spheres – New Insights Concerning the Light Trapping Efficiency. Appl. Surf. Sci. 2020, 534, 147327. https://doi.org/10.1016/j.apsusc.2020.147327

[16] Solymos, K.; Babcsányi, Iz.; Ariya, B.; Gyulavári, T.; Ágoston, Á.; Szamosvölgyi, Á.; Kukovecz, Á.; Kónya, Z.; Farsang, A.; Pap, Z. Photocatalytic and Surface Properties of Titanium Dioxide Nanoparticles in Soil Solutions. Environ. Sci.: Nano 2024, 11, 1–29. https://doi.org/10.1039/D3EN00622K

[17] Chimmikuttanda, S. P.; Naik, A.; Akple, M. S.; Singh, R. Processing of Hybrid TiO2 Semiconducting Materials and their Environmental Application. Terrestrial and Aquatic Environments 2022, 10, 277–300. https://doi.org/10.1016/B978-0-323-90485-8.00011-4 

[18] Jaybhaye, S.; Shinde, N.; Jaybhaye, Sh.; Narayan H. Photocatalytic Degradation of Organic Dyes Using Titanium Dioxide (TiO2) and Mg-TiO2 Nanoparticles. J. Nanotechnol Nanomaterials 2022, 3, 67–76. https://doi.org/10.33696/Nanotechnol.3.032

[19] Gisbertz, S.; Pieber, B. Heterogeneous. Photocatalysis in Organic Synthesis. Chem Photo Chem. 2020, 4, 456–475. https://doi.org/10.1002/cptc.202000014

[20] Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment-A Review. Catalysts 2020, 10, 804. https://doi.org/10.3390/catal10070804

[21] Lumeau, J. Photosensitive Materials: Optical properties and applications. Optics / Photonic; Aix Marseille Université, 2012; pp 1-111. https://hal.science/tel-01274421v1

[22] Petriashvili, G.; De Santo, M.; Devadze, L.; Zurabishvili, Ts.; Sepashvili, N.; Gary, R.; Riccardo Barberi, R. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film. Macromol. Rapid Commun. 2016, 37, 500–505. https://doi.org/10.1002/marc.201500626

[23] Murray, M.; Naydenova, Iz.; Martin, S. Review of Recent Advances in Photosensitive Polymer Materials and Requirements for Transmission Diffractive Optical Elements for LED Light Sources. Opt. Mater. Express 2023, 13, 3481–3501. https://doi.org/10.1364/OME.502234

[24] Liao, Y.-Y.; Liu, J.-H. Holographic Gratings Formed in Photosensitive Polymer Materials with a Liquid Crystalline Monomer. React. Funct. Polym. 2009, 69, 281–286. https://doi.org/10.1016/j.reactfunctpolym.2009.01.011