SOME FEATURES OF THE INFLUENCE OF FLAKED PARTICLES ON THE STRUCTURE FORMATION OF CONCRETE

In the article, based on the literature analysis, it was shown that the particle shape, size, quantity, and ratio between the fractions of coarse aggregate affect the workability of concrete mixtures, as well as the density, strength, and durability of concrete. This applies to all types of concrete mixtures, from self-compacting (SCC) to rigid (RCC). However, studies mainly focus on cube-shaped aggregates, while crushed ones, which has a flake-like shape, is widely used in concrete. In Ukraine, quartzite crushed stone with 25–55% flake particles are used in pavement concrete. It was found that flake particles significantly influence structure formation in concrete. If they are positioned horizontally during compaction, large air voids may form underneath, followed by smaller bubbles. This weakens the contact zone, reducing concrete density, flexural strength, and durability while increasing water absorption.

Khaleel, O. R., Al-Mishhadani, S. A., & Razak, H. A. (2011). The effect of coarse aggregate on fresh and hardened properties of self-compacting concrete (SCC). Procedia Engineering, 14, 805-813. https://doi.org/10.1016/j.proeng.2011.07.102

Zarauskas, L., Skripkiūnas, G., & Girskas, G. (2017). Influence of aggregate granulometry on air content in concrete mixture and freezing-thawing resistance of concrete. Procedia Engineering172, 1278-1285. https://doi.org/10.1016/j.proeng.2017.02.153

Nagrockienė, D., Skripkiūnas, G., & Girskas, G. (1970). Predicting Frost Resistance of Concrete with Different Coarse Aggregate Concentration by Porosity Parameters. Materials Science17(2), 203–207. https://doi.org/10.5755/j01.ms.17.2.493

Skripkiūnas, G., & Vaitkevičius, V. (2001). The influence of coarse aggregate concentration on the strength of concrete and on the porosity of concrete mortar. Statyba7(6), 446-452. https://doi.org/10.1080/13921525.2001.10531771

Butakova, M., & Gorbunov, S. (2017). Improving Performance Characteristics of Construction Materials Manufactured by Pressing Technology. Procedia Engineering206, 814-818. https://doi.org/10.1016/j.proeng.2017.10.556

Yamei, H., & Lihua, W. (2017). Effect of particle shape of limestone manufactured sand and natural sand on concrete. Procedia engineering, 210, 87-92. https://doi.org/10.1016/j.proeng.2017.11.052

Zhang, R., Liu, P., Ma, L., Yang, Z., Chen, H., Zhu, H. X., Xiao, H., & Li, J. (2020). Research on the Corrosion/Permeability/Frost Resistance of Concrete by Experimental and Microscopic Mechanisms Under Different Water–Binder Ratios. International Journal of Concrete Structures and Materials14(1). https://doi.org/10.1186/s40069-019-0382-8

Li, L. G., Feng, J.-J., Xiao, B.-F., Chu, S.-H., & Kwan, A. K. H. (2021). Roles of mortar volume in porosity, permeability and strength of pervious concrete. Journal of Infrastructure Preservation and Resilience2(1). https://doi.org/10.1186/s43065-021-00033-2

Wang, C., Qiu, Q., Wang, X., Zhang, S., Wang, G., & Wei, P. (2024). Concrete Aggregate-Gradation Effect and Strength-Criterion Modification for Fully Graded Hydraulic Concrete. Materials17(15), 3816. https://doi.org/10.3390/ma17153816

Gimenes, M., Rodrigues, E. A., Bitencourt, L. A. G., & Manzoli, O. L. (2022). 2D mesoscale modeling of compressive fracture in concrete using a mesh fragmentation technique. International Journal of Solids and Structures, 112031. https://doi.org/10.1016/j.ijsolstr.2022.112031

Grassl, P. (2023). 3D lattice meso-scale modelling of the effect of lateral compression on tensile fracture processes in concrete. International Journal of Solids and Structures262-263, 112086. https://doi.org/10.1016/j.ijsolstr.2022.112086

Abd Almajeed, S. Q., & Abbas, Z. K. (2024). Eco-Friendly Roller Compacted Concrete: A Review. Journal of Engineering30(07), 144–165. https://doi.org/10.31026/j.eng.2024.07.09

Shi, Y., Zhou, S., Wu, C., Huang, J., Liang, Y., Wang, T., & Peng, S. (2024). Research on the mix proportion and on-site construction technology of a four-graded roller compacted concrete.  https://doi.org/10.21203/rs.3.rs-4290682/v1

Zhang, P., Gao, Z., Shi, Y., Lin, Y., & Li, J. (2020). Effect of large broken stone content on properties of roller compacted concrete based on fractal theory. Construction and Building Materials262, 120821. https://doi.org/10.1016/j.conbuildmat.2020.120821

Khasanov, B., Tillaev, A., & Mirzaev, T. (2021). Compressive strength properties of hyper-compacted concrete. E3S Web of Conferences264, 02060. https://doi.org/10.1051/e3sconf/202126402060

Tolmachov S.M, Tolmachov D.S. (2024) Miscevі zapovnuvachi dlya cementobetoniv transportnogo pryznachennya. Monografiya. Kharkiv: FOP Brovin. Retrieved from http://webirbis.korolenko.kharkov.com/cgi-bin/cgiirbis_64.exe?LNG=en&P21DBN=IBIS&I21DBN=IBIS_PRINT&S21FMT=fullw_print&C21COM=F&Z21MFN=526766

Yu, J., Cai, X., Ge, Y., & Yu, Y. (2015). Effect of elongated and flaky particles content on the durability of concrete. In ICTE 2015 (pp. 1183-1188). https://doi.org/10.1061/9780784479384.14

Molugaram, K., Shanker, J. S., & Ramesh, A. (2014). A study on influence of shape of aggregate on strength and quality of concrete for buildings and pavements. Advanced materials research941, 776-779. https://doi.org/10.4028/www.scientific.net/AMR.941-944.776

Zakharov, D. S.(2019) Road cement concrete with high flexural strength (Doctoral dissertation). Retrieved from http://lib.kart.edu.ua/bitstream/123456789/5223/1/dis_Zakharov.pdf

Gusev B.V., Zazimko V.G. (1991) Vibracionnaya tehnologia betonov. Kyiv: Budivelnik. Retrieved from https://books.totalarch.com/concrete_vibration_technology