Hybrid Deep Learning for Image Denoising: Balancing Noise Removal and Detail Preservation with Game Theory

Image denoising aims to suppress noise while preserving fine details, a challenge for multimedia and computer vision applications. Conventional convolutional models achieve effective denoising but often oversmooth textures.  Recently, Multi-Layer Perceptron (MLP) based structures have shown strong potential for image restoration.  In this work, we propose a hybrid framework that combines an MLP-based denoising module with a UNet-based detail-preservation network.  The interaction between the two components is formulated within a game-theoretic framework, where noise reduction and structural fidelity are modeled as competing objectives seeking a Nash equilibrium.  Experiments on the Smartphone Image Denoising Dataset (SIDD) demonstrate improved PSNR and SSIM compared to single-model baselines. Visual results confirm sharper edges and richer textures with effective noise suppression.  This study highlights the promise of combining MLP-based architectures and game theory to achieve robust and detail-preserving image denoising.

  1. Dabov K., Foi A., Katkovnik V., Egiazarian K.  Image denoising by sparse 3-D transform-domain collaborative filtering.  IEEE Trans. Image Process.  16 (8), 2080–2095 (2007).
  2. Zhang K., Zuo W., Chen Y., Meng D., Zhang L.  Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising.  IEEE Transactions on Image Processing.  26 (7), 3142–3155 (2017).
  3. Zhang K., Zuo W., Zhang L.  FFDNet: Toward a fast and flexible solution for CNN-based image denoising.  IEEE Transactions on Image Processing.  27 (9), 4608–4622 (2018).
  4. Vincent P., Larochelle H., Bengio Y., Manzagol P. A.  Extracting and composing robust features with denoising autoencoders.  ICML '08: Proceedings of the 25th international conference on Machine learning.  1096–1103 (2008).
  5. Tolstikhin I., Houlsby N., Kolesnikov A., Beyer L., Zhai X., Unterthiner T., et al.  MLP-Mixer: An all-MLP architecture for vision.  NIPS'21: Proceedings of the 35th International Conference on Neural Information Processing Systems.  1857, 24261–24272 (2021).
  6. Salah F.-E., Moussaid N., Abassi A., Jadir A.  Towards a Nash game strategy approach to blind image deconvolution: a fractional-order derivative variational framework.  Mathematical Modeling and Computing.  11 (3), 682–691 (2024).
  7. Salah F.-E., Moussaid N.  Machine learning and similar image-based techniques based on Nash game theory.  Mathematical Modeling and Computing.  11 (1), 120–133 (2024).
  8. Semmane F. Z., Moussaid N., Ziani M.  Searching for similar images using Nash game and machine learning.  Mathematical Modeling and Computing.  11 (1), 239–249 (2024).
  9. Nasr N., Moussaid N., Gouasnouane O.  A comparative study of game theory techniques for blind deconvolution.  Mathematical Modeling and Computing.  11 (1), 300–308 (2024).
  10. Abdelhamed A., Lin S., Brown M. S.  A High-Quality Denoising Dataset for Smartphone Cameras.  2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.  1692–1700 (2018).